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Introcduction

Althcugh tne earliest students of hydrodynamics vwere stronely interested
iv such natural rphenomera as fountains and water waves, prugress in attaining
a mathematical description of these phencmena has teoen relatively slow.
It was not, in fact, until the nineteernth century that the mathematical
fremework of hvdrody~amics was estatlished on a2 firm tasis, 8ince then,
knowledge in this fiesld has accummlated -~ along with that in the other
major sciences -~ at an accelerating rate. 3Iet there remain - as in the
other sciences -- important questions that are still unanswered. For example,
we may ask what are the precise shape and velocity of a simple surface
wave on the ocean? Although these erntities can be approximated to a high
degree of accuracy, there exist as ye! ro formulas which describe them exactly.
The basic mathematical difficulty lies in the treatment of the free
surface boundary of the fluid. In the usual problem involving a boundary,
the boundary is nct free, but is instead fixed and its location is kncwn.
The customary approach to this problem then involves the setting up of
a mathematical expression which states that the fluid must nct pass through
the boundary. However, in & hydrodynamical problem involving a free surface
boundary, the character of the boundsry value problem assumes a special
nature. On the boundary -- the free surface -- ore prescribes two conditions,
namely, that the free surface is not violated by the fluid, and, further,
that the pressure is constant there. However, until we have solved the
problem, we do not know the shape of the free surface. Thus we must solve
2 boundary value problem with an unknown boundary.
Historically, the early investigations of surface waves used linearization

-- a technique in which, essentially, the free surface is assumed to be
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flat for the purpose o1 prascribing boundary conditions. As long as the
waves ars very small, this approximation is justified. The next approach
was to use the exact equations, but to neglect all terms of order higher
than the seccnd. The applicability was thus extended to include larger waves,
Outstanding among the contributions to the thsory of waves of finite amplitude
are those of Stokes [10] and Rayleigh [8]. It is hardly necessary to go
into the history of this theory, since excellent treatments can be found
in readily available works such as lLamb [3]. A less technical treatment
is given by Sverdrup, et al [1)]. Rossby [9] has shown that the system of
deep water waves of finite amplitude given by Stokes is only one of ait infinite
mmber of possible irrotational wave systems. Gernstner [2] dropped the
requirement that the motion be irrotational and was able to obtain an exact
solution to the remaining equations -- those of continuity and constant
surface pressure — which showed surface waves over deep water to have a
trochoidal profile. His work will be mentioned again in Chapter II.

In the exact theory for irrotational waves -- the theory with which
this paper is concerned — levi-Civita [5] has shown that finite waves of
permarcnt form do exist. It might appear, especially to one who has
witnessed the evidence, that an existence proof for oiean waves is unnecessary.
However, this is not the case, for in rsality it is only in the mathematical
treatment that true permanent waves actually exist. We neglect viscosity
and hence the frictional forces that in nature tend to cause a wave, in time,
to lose its force. Thus in deviating slightly from physical reality,.we
make it necessary to prove the existence of a solution to our problem. The
existence proof of levi-Civita yielded a fair approximation to the shape

of the vave., There has been some interest in the solitary wave problem also:




the question is whether or not i single wave of permanent form can exist
on the ocean, inasmuch as a sudden disturbance usually sets up 2 train of
waves instead ci a singie wave. The question has heen answered in the
affirmative by Lavrentieff [h], but he dic not give the exact shape of the

/

waveﬁ This problem is mentioned because of the fact that the methods of
this paper could be applicable to it.

A fresh aprcroach toc free-surface problems in hydrodynamics has been
made possible recently ty the introduction of a new mathematical tooi {6].
This new procedure ailows us to generate free-surface flows at will, =na
it forms the fundamental concep® wupon which this paper is based. The method
is an extensicn to the study of nen~gravity flows of classical investigations
based on the theory of functions of a commlex variable. As is pointed out
in most t extbooks on the subject;, any aralytic function can be interpreted
as the eolution to a two-dimensional hydrsdjymaimmical flow problem. Our
analysis is somewhat ireversed from normal procedure, however, in that one
must first decids on a functicn, and then deotermine what hydrodynamical flow
problem it solves. O0Of course, more than pure guesswcrk is involved. Having
a particular flow problem in rind, one procezds, a: arn analy*ical detective,
toe uncover certain clues which will enable him tc choose the proper functica.
In tris paper, we thus construct seversl examplies ~f frre-curfzce flows using
a fcrmula suggested oy Hans Lewy [5]. He found that whereas zny analytic
furction represents a hydrodynamizal flecw, 3f we restrict the func<ional rela-
tionship in a certain way, the flow then becones a Ires-surface flow in a

gravity field.
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phenomena, one must make some plausible assumptions in order to simplify
the mathematics. In this paper we make the usual assumptions concerning
the fluid, namely, that it is incompressible and is without viscosity.
Further, our investigations will deal with phenomena which are representable
in two dimensions, and which cén be generated from rest -- that is, which
are irrotational. Bernoulli's 1=« =»ill be used in its exact form.,

Now that our medium is defined we may state lewy's disccvery explicitly.
He found that if )( f) is an arbitrary analytic function of S which is real

on the real S-axis, then the mapping

(1) Z(S)w'ig(s)‘/{?ﬂ%g) (dér(S))z as

represents a steady free-surface gravity flow in the z-plane, the free surface

being the image of a segment of the real S-axis along which the inequality

1 (d,l)zio

22 ‘dg

holds. In Chapter I, this relation will be developed in a manner different

from that used by lewy. The existence of ;Qfor such a free-surface flow
and the proof ~: the analyticity of the free surface will also be given.
It should be pointed out that this work was done by Lewy in a more general
manner than that prosented here, It is hoped that the loss in generality
is compensated for by a gain in simplicity.

The major contribution of this paper lies in the application of lewy's
theory. Up until #+%is time there havs been no important free-surface flows
in a gravity field represented in closed form. The solutions have, in the
past, been either approximations (1inearized theory) or the first few terms

of an infinite series solution. With Lewy'!s method one obtains a solutiomn

o
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which is in closed form. The major difficulty with the method lies in trying

to pick the few significant functions /%(_g) out of the infinite number

of pcssible functions. The functions wuich will yield

o

o+

he solutions to
three outstanding problems of surface waves remain as yet unknown. These
are the problems of periodic waves over a flat bottom of finite depth,
periodic waves over an ocean of infinite depth, and the suvlitary wave.
Tt is hoped that this paper will be of some aid in the quest for the
these problems.

In Chapter II an example of a free-surface wave will be given. It is
of trochoidal profile and travels over a smooth, but not a flat, bottom.
Chapter III contains a limiting case of the flow of Chapter II where the trochoid
becomes a cycloid. It is shown that when this occurs, the character of the
flow changes completely in that the periodic nature of the flow is destroyed.
Some general properties of deep-water waves are studied in Chapter IV with
respect tc their affect on the choice of the arbitrary function/z(zf). ‘
An example of surface waves giowing out of these considerations is given.
In Chapter V we leave the realm of surface waves and examine two flows
of a non-periodic naturs. One is a fountain-like flow which yields many
interpretations. It is especially interesting because it provides a first
example of how a stagnation point on the surface need not necessarily occur
at an angle of 27T73. The second example might be interpreted as the skimming
action of a vertical beard being drawn rapidly along the surface of a deep
body of fluid.

It should be mentioned that the attack on the problems of free-surface
phenomena received impetus during the war because of its military importance,

the major interest centering around ocear waves. In order to prepare
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adequately for an amphibious assault, on= needed a means of forecasting wind
waves and swell. A part of this study recnired a knowledge of shapes and
velocities of the waves when, having becn created by storm, they moved on
through the undisturbed sea. A knowledge of the shape and velocity of ocean
waves 1s also important to those making a study of ship stabilization,
since the forces on the hull of a ship at sea are dependent on them. Under
certain conditions, one can see ocean waves quit2 clearly from the air.
To the airman, the exact shape of the waves is not too important, but the
velocities might well concern him. A ship at sea forms directlyv behind
it a train of waves called the transverse wake and these waves move with
the same veli~ity as the ship., ¥From the air one can measure the wavelength
of this transverse wake and consequently, knowing the velocity of a wave
as a function of its wavelength, one is able to determine the speed of
the ship. Also, the knowledge of wavelength as a function of velocity and
depth can be applied to determine, from aerial photographs, the depth of
a bay, the slope of a beach, and other geographical data.

I would liks to express my great appreciation for the hslp given by
Professor Hans Lewy in my ea-ly work on the zpplications of his theory.
And, of course, the guidance and inspiration received from my advizor

Professor Paul Garabedian is without measure.
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Chaoter I

As vias mentioned in the introduction, we are investigating steady,
two-dimensional, irrotationz2l, free-surface flows of an incompressible,
inviscid fluid in a gravity fisld. From the irrotationality, we know that
there exists a velocity potential ?) such that the velocity, T>, is the
gradient of ?J . Tor steady incompressibl:= flows the equation of
continuity states that the divergence of qis zero; therefore (Psatisfies

<23

laplacesis eguation 7 Y = 0, Tinally,

Bernoulli's law, which, in our case, takes the form

(2) 1/2 q2 * gy ‘)-g = constant,

where q , without the arrow, isthe magnitude of the velocity ?, g is the
acceleration due to gravity, y is the vertical coordinate (positive upwards),
P is the pressure at any poirt of the fluid, and fis the density of the
fluid., If we inuroduce the stream function \f/, we may describe a two-

dimensional flow by the complex potential

{@ =P (2) + 1 V(2).

Then
g_g -¢ + i 1 = - i = -3ia
dz x ‘I’; ?x ?)y 1 SO
where q 1 and q, are the x and y components of velocity, respectively, whence

the bar denoting the complex conjugate. The above development is familiar

from textbooks on hydrodynamics or complex variables and consaquently we
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omit further detail nere and proce=d io develop Lewy's thesry.

i)

fnysically a stream line is a line across which no fluid will fiow -

Y

thus any stream line is a possibls boundary for the {low, If we want cone

of our stream lines to be a free surface houndary, then we must; in additién,
require that the pressure be constant all along this stream line. Conversely,
if along some segment of a stream line the pressure turns out to be constant,
then it is a possible free surface. For the best physical example to
illustrate this constant-pressure criterion, w= again turn to the ocean.
pressure of the air. Since the inertia of air is very small compared to

thet of water, the surface of the water may easily displace the air and so

is not impeded by the air during a change in shape. That is to say, the
surface is free to change shape. This is an important factor in progessive
waves, for if they were required to do much work in displacing the air, they
viould soon lose their force., Of course, the constant.-pressure criterion is
again a mathematical idealization, for air does have its effect on surface
waves, especially when the air i.s itself in motion. Indeed; most ocean waves
owe their existence to the forces created by air ia rapid motisn.

In any flow represented by a complex potzntial, a stream line is
characterized as the image of a line Dm(sd = constant. One of the stream
lines in the z-plane is hence the image of the line Tm(f;) = 0, and it is
this line tiat we will select for the free surface. We now turn our attention
entirely to this free-surface stream line. It may be that only part of the
real :f-axis will satisfy the free-surface criterion of constant pressure.

At any rate, whether it be all or only a part of the ‘::—axis that is the image

of the free surface; we will call it the free-surface segment of the realiS:axis.
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the free surface. We may, therefore,srite Bernoulli's J-w in the form

(3) 1/2 q2 4+ gy = -jg 4 constant,

where everything on the right-hand side is constant. We are at liberty to
chocse the location of the origin in the z-plane and can do so in such a way
that the constant gk obtained from replacing y by some y# ¢ k just cancels

the two constants on the right-hand side oi equation (3). This means, in
particular, that the zero-velocity level of the fluid coincides with the real
z-axis when we are on a free surface. Notice that if we are not on a free
surface, there is no reason to expect zero velocity on the real z-axis, since
then the pressure P is not necessarily constant. A saving in effort is
achieved if we further set the acceleration of gravity equ 1 to 1. Physically
this means we are choosing our unit of length to be equal to approximately

32 feet, provided time is still measured in seconds. Thus, on the free surface,

Bernoulli's law takes the simple form

| d‘a 2
(b) 1/2 —Z;’—- ¢y =0,
This can be inverted and rewritten as
(%) e &, 2.0,

This equation is true only on the free surface, with dz and d 3 measured along
the free surface. But the free surface is the imape of Im( %) = O, and

therefore we may replace d? by d's’, since both are equal to d? and are
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real there. Hence equation (5) becomes

dZ dz + __]._ = O
df d¢ 2y )
D -

Since z - z = 2iy, we have z = z - 2i), so that

dz az _ 2i91

d_~§'=df" dS’

wnere g-'_%- = g—%— has meaning, since the free surface can be represented
_

parametrically in the fcrm 2z = z(ﬁ@) = x(?) + iy(?)). We note that from
equaticn (L), the inversion z = z(:;) is always possible if the fres surface
is bounded away from the real z-axis. If we let a prime ' designate differentia-

tion with respect to g, we have finally

(6) 2t (2! - 2iy!) ¢2—31,— =0,

We now come to the essence of lewy's idea. Equation (6) is an equation,
involving a real quantity y, that must hold on the free surface. But
suppose we ccnsider it as an equation in the complex domain involving a
complex function y. Then its solution would be an analytic function
(under proper restrictions)} and hence would represent a hydrodynamical flow.
If this complex quantity became real along the stream line Im( f) = 0, then
by virtue of the derivation of equation {6), that stream line would be a
free stream line‘., To accomplish this, we replace -y by au analytic function
of f, 2 ( §), which is real and positive along some segment of the real

'S-axiS; If we insert this function into sguation (6) we have

(7) z! (z'~2iﬂ')---2—1;r- =0 .

Since A (ﬁ) is analytic, equation (7) is a non-linear differential equation
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which connects 2 with:ﬁjjxan analytic way., Consequently, it determines 2
hydrodynamical flow. ¥Furthermore, the image of a segment of the realjf-axis
is a stream line along which prassure is constant by virtue of the derivation
of equation (7), provided,g = -y on the stream line --— a fact we establish
imnediately. Hence this stream line is a free-surface stream line.

The differential equation (7) may be solved for z in terms of an integral,

(8) z=~i/?¢r/!r—2%;i—-— Ar? df.

It is clear from this equation that A (j;) is equal to -~y on the free
surface, provided the integral itself is real on tne free surface.

Consequently,we must require

(9) =77 >
along the free-surface segment. We call this the free-surface condition.
We now have a method of cconstructing free-surface flows, Using
equation (8) we may generate a free-surface flow by inserting any function
;{(jg) which is 1) analytic, 2) greater than zero (hence real) on some
segment of the real j;-axis, and 3) such that 1/2,Z 2 ;{'2 on this segment.
Recall that in the classical theory, the arbitrary analytic function itself
determines the flow, whereas here the arbitrary analytic function appears
as a parameter and as & consequence exerts a more indirect influence on the
resulting flow.
It is also possible to maxe a converse statement. For any free-surface
flow, there exists a unique function ;l(if) which will generate the flow in
the above ssnse. Furthermore, any free-surface flow may be continued across

the free surface and as a consequence, the free surface mnst bhe an analytic
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curve. Before going ahead with the proof of these statements, we will
demonstrate the necessary existence and uniqueness theorems for first-order
ordinary differential equations in the complex domain.

The existence and unigueness theorems needed here differ slightly from
those usually given in the textbooks. Often the initial values are taken
a. the centers of the domains under consideration. fe will need to assign
an initial value to the independent variable which is on thie boundary of the
domain. Further, the usual proof just shows that the solution exists and
is analytic within the domain under consideration. We will need both existence
and uniqueness on the boundary cf the domain, and we will prove tnat the
solution is also continuous on the boundary.

Consider the differential equation

e 42 -5,
together with the following domains. Let D1 be an open circular region of
the ;%-plane of redius r and center f?oo Let D2 be an open simply-connected
region of the jf-plane which may be of any configuration, provided that any
two poin:s belenging to D2 can be joined by a path of finite length contained
in the closure of D2° Choose the radius r of Dl and the domain D2 so that
f(}?,]f) is regular and single valued for both variables ranging within
their respective domains, is continuous in both variables within and on the

boundaries of these domains, and satisfies the Lipshitz condition

Al "/?2!
1
for /(1 and /{2 within or on the boundary of D1 and { belonging to the closure

£(4,A)

<K

£, A4 - 25,4

for y and.;?belonging

of D2° Further, let M be the maximun value of
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to the closures of their respective domains. The existence of the maximum

is assured by the continuity of the function f(thQ). Now letgg; belong
to the closure of the domain D,, where we specifically allow values on the
%/

boundary of D If we denote the greatest length of path necessary-’ to join

°
go to any point gthat belongs to the closure of D2 by S, and if S <§ 5
then we may proceed with ihe analysis. If, however, S > %,then we alter D2
by removing those parts farthest away (by path) from:f; until the inequality
S < % holds. Call this altered domain the domain D, and set D = D2 when
no alterations are necessary. Then the differential equation (10) admits
a unique solution A ($) witn 7 , = A{3) which is amalytic within D and
continuous in the closure of D.

Suppose for a moment that a solution to the differential equation is known
which has as initial value ,20 for §>= :§o° This solution would salisfy ths

relation §

A = A, +f50 £(t, A (£))at.

If the function ;?('S) is unknown, then this relation becomes an integral
equation which may be solved by the method of successive aprvroximations in
the following manner.

Consider the sequence of functions

f/Alt,hough it i8 not really neccssary, we will assume for sake of clarity
that a peodesic exists for all pairs of points belonging to thae closure of
D2. We say geodesic (path of shortest length) because it is possible that

two points could not be joined by a straight line lying in the closure of
the domain D2. In that c-<e parts of the boundary must be used together

with straight-line segments.
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£(t, ,?o)dt,

£(t, A )dt,
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where each of the integrals is a line integral from -fo to some point fin

A

£(t, An_l)dt,

D along a path each point of which belongs to the closure of D. Since /?o
is a constant within Dl’ f(t, Ao) is a regular, single-valued function of t
for t within D, and is contimuous in the closed domain D. By Cauchy's integral
theorem the value of R 1 is independent of the path of integration and,
further, by Morera's theorem, )1 is regular and single valued within D. The
continuity of 21 for all fbelonging to the closure of D follows from the
fact that it is an integral. Note that the path cf integration may inciude part
of the boundary of D, for Cauchy's theorem requirss only analyticity within
the contour and continuity on the contour. The endpoint 5 may be on the beundary,
and the value of /71 on the boundary is quite independent of our path; that
is, we may reach this boundary point by integration along part of the boundary
or by apgroaching it from within D.

Turning our attention to /?2, we see that we will be able to attribute
the same properties to )2 as we nave to /?1 as soon as we have shown 1(t, /71)
to be reguilar and single valued within D and continuous for 5/ belonging to

the closure of D. To do this we must first show that /?1 is within Dl’ Now

O
A .j £(t, A)at,
£
2o

o o o Aty WS

:




7T TR I e SRR

LA

". K ”ﬂ\ﬁzlﬁ’?w-n

where the value on the left is independent of the path of integration. Consequently,

for purposes of obtaining s good estimate, we may choose the geodesic joining

2 Y
'_So to D as our path of integration. We have
e
- <
IAI oc = Ji f(t’ O)I at ?
3
<M j dat{ <Ms .
But by construction, S f{f so that
Rl - /?r: <r

and /‘{1 is in Dl' WHe lmow +hat f( ‘S,Iq) is regular, continuous, and single

valued in its second argument, provided the second argument is within bl'

But /11 is within Dl; consequently, f(f, /?‘) is a regular single—valuea

function of fwithin D and is continucus in the closure of the domain D,

From this we may conclude that /72 is a regular single-valued function.of

3 within D and a continmouns function offwithin and on the boundary of D.
Suppose now that /?n-l is within D1 and is a regular, single~valued function

of SWi'tnin D, and is continuous in the closure of D. Then

LS
/?n - /?o < f f(t,ﬂn_l) dti,
3
<MS <r,

so that '/?n also is within Dl' Furtner,

3
)n = 20 05 i(t,/?n_l) dt ,
3
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E so that ;qn is also regular and single valued within D and continuous in the

closure of D, s the induction is established.

We now show that these ;3 convergs uniformly and absolutely to a limit

function /{(jg). In the remainder of this proof we will always agree to take

the geodesic path when integrating to a point :;. It is clear that

1
J.
3,

fuy;

(o}

<

£(¢,A,)

vz
where s is the distance from jf to O along the geodesic path. Notice that
L ay

5 is a function oi_j and is not to 1sed with S, which is a constant.

73

\l

- If D is convex, then s 'LD -3 I Now

' Ay - A !_<fj !f(t, Ay - f(t,ﬂo)l ’ dti,

P lmeis
iy

and upon applying the Lipshitz condition we have

Ay - A,

- K

w\a‘mﬁ’,’ﬂ,"!!!g?.? .ﬁm:m *T‘me

53
e

But we have just shown that < Ms, so

A2

;?l - /;L

5
T 2
(

~o

- Suppose now that
n-1l

A =
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S S}i ’ Ana - An-a

v

J
fMKn-l.ql_T'l%—l-Trf Sn-l ds 'MKn—ln

B

n
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P
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We may now replace s by S sc that we have a uniform bound Icr the absoliute

values of the differences Rn - ;?n-l' fonsequently the sum
Ao 22 (Rjd) - A3y

by the Weierstrass M-test, converges absolutely and uniformly in the closure
of the domain D. Therefore,)n-'?';%(f‘) and A(f£) is regular and single valued
within D and continuous within and on the boundary c¢f D, because a uniformly

convargent sequence of continuous or regular functions converge to a continuous
or regular function,

Consider the equation

b
A5 = A s § £(t, A (t)at .
%

If we take the limit as n—> o of both sides we obtain

1im /’]n(j}) = 20 *+ iim f £(t, Rn..l(t))dt ’
n—» n-—->w _f
o

_— » A A e T T L B A A S S IO 7Py . . "
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or

o
-~
S’

Ay = Ao {7 28,00t

This last step is legitimate by virtue of the uniform convergence of the

functions /?r.
If we consider the Lipshitz condition

<KP_ 2

.
we see that the functiuns £(3, A3, £( S, A), (3, A) ... forn a wnifornly

(3, A) -2, <Xg_,

convergent sequence of regular single-valued functions within D, continuous
in the clecsure of N, Consequently f(f,x), the 1limit function, is also

regular and single valued within D and continuous in the closure of D. Under

these conditions we may differentiate the indefinite integral (11) to obtain

44 - 24,90 .

=
Thus ,-? (f) satisfies the differential equation and from (11) it is clear that
A(Sy=A..
Finally, we prove the uniqueness of /‘Z 2 LetA('g) be a functior which
agsumes the value 20 at "_'_;; and which satisfies equation (10), and nerce
equation (11). Suppose that Nis regular, single valued, and continuous

in a connected domain D% which includes those regions of D in which the

inequality

iA-/?oi<r

holds. At least a small region of D near 50 is included by reasons of

e e et g b A
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continuity. If :gis now restrictad to D#, ve have

S
AN -/( a (7 e, 7)) - £t A))dt
Vg

D)

-0

whence

lA- Als j’é |f(t,A) =Nis R)Hdtl,

tA

o
«§"la- Al

4

)
< Kr C ds = Krs,
- d

5o

where 3 has the same meaning as before. But again

i/_\-;{}, < 5j| £(¢,/1) - f(t,;n“ dt|\,

o

N4
)0

[x-;{ildtl,

o
fKJ{

o
We may now use the estimate above to obtain

;1 < K2 JD ds = K2 s R
ANA-Al=k r s ds r 57
o

It is quite clear that the induction can be established so that we obtain,

finally,

Y B e e
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But the left-hand side is independent of '; consequently, /\=’;Kin D#,
But if,g -N in D#,then necessarily ;1= {\in D, This completes the proof.
We now have the equipment to prove that a unique function.R (ff) exists
for any free-surface flow, and that the free surface is an analytic curve:/
Our vasic tool is the differential equation (7). We consider as given a complex
poﬁentialfg(z) ==q50 i'¥/;hich represents a free-surface flow, namely,
which is analytic in soms region of the z-plane bounded ty an arc lying in

the lower half-plane whose image is a segment of the real g'-axis. Along

this segment we assume that the equation
72
a¥
vz |$5| sv =0

holds. This is tantamount to saying hat the pressure is constant along the

This exceptional arc will be called, and is, the free surface.

arc.
For the proof, it suffices to consider a small arc of free surface which

is bounded in depth and which is bounded away from the real z-axis. Thabt

is to say, on this free-surface segment, M > y > € > 0. It is then clear

from Bernoulli's law that z' = di is also bounded and bounded away from
Iz
We will further assume that z' is continuous on the free surface.

28TI0.

This means that the free surface must, in particular, have a continvously

turning tangent. It is given that z' is analytic within some semi-neighborhood

:/The method used in proving this theorem has been presented in more generality
by Lewy in A theory of terminals and the reflection laws of partial differential
equations, Technical HKeport 1. U, Gontracit Nenr-225(11)(NR-OII-0R6), Cffice of
Naval Research, Applied l'athematics and Statis®ics Laboratery, Stanferd Uni-

versity. California, Aug. 8, 1y52,

> o NI i, Ll
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of the free surface.

We first find the ;}function that goes with this [low. Equation (7),

1

(7 2! (z2' + 2i A=)-—2—R— =0,

may be considered as a diffsrential equation for an unknewn ;2(j§) with known

z', Solving for ;Q’ we have

P!

(12) A'_% 1 1

21 { 22" ] -z').

For initial values, we will take a point on the free surface. Let ;?0 = Js
vhere v is the imaginary part of a point z, on the free surface which is the

image of :§o° The region 02 is some lower semi-neighborhood of the image of

single valued., It is clear that all the hypotheses about the function
1 any circle

(L, A) = _%T (-§E%Zr— - 2') are satisfied if we take for D
which sxcludes the o}igin of the ;%-plane and for D2 some lower semi-neighborhood
of the real ;f-axis ahere, by reason of continuity, z' remains bounded

away frcm zerc and infinity as it is on ths ifrec-surface segment. Thus

there exists 2 unique functicn :?(;ﬁ) which satisfies eguation (12) and

attains the value - Y, at -jzo

To see that this ;% (ig) becomes -y all along the free-surface segment

inclvded in D and not just at the point z_, We use the wniqueness of the

solution., It suffices to show that -y is a solution to equation (7) along

the free-surface segment. Consider Bernoulli's law in the form

G @@ 1
dg d-g-;- 2y

Since we are only interested in staying on the free surface, d:f = d?;




[P

—

D0
hence d;{ =d <, and we may replace g%; by %%3 . Purther, z-z = 2iy, and

on the free surface we have assumed that the real and imaginary parts of z
(now functions of the rsal variable q>alone) have continuous derivatives, so
that z' = 2! - 2iy' has meaning, where prime designates a%? = e%; o Thus

Bernoullit's law takes the form

z' (z' - 2iy') + =0,

%Ir*

which, upon replacing y by -y, is just equation (7). This verifies that -y
is a solution of equation (7) and therefore that ;R(jg) and -y coincide on
the free surface. Incidentally, this shows that ;2(1:) is indepsndent of the
starting point Z .

As a function of jg, )? is real on the real jfuaxis and hence can be
continued into the upper half-plane by Schwarz's reflection principle. This
defines ;z(jg) as an analytic function abovs and, in particuiar, on the real

f?—axis. We then return to equation (7) and consider it as a d..fferential
equation in an unknown z(:f) and a known‘;z(:f) above the free surface.

As such it is solvable in the form of equation (8), which thus serves to deter-
mine z abowve the free surface. Because this new z(:f) defined above the

free surface apgrees along the free surface with the original z(:f) of the flow,
it is, b: definition, the analytic continuatior of the original z(¥ ). But
z(:f), being an analytic function, determines a hydrod:mamical flow.
Consequently, we have axtended the flow across the free surface boundary.

The continued function ;}(15) is analytic on the free-.surface segment, so

by Morera's theorem and equation (8), z(jf) is 2180 analytic cn the frae
surface,. Since the free surface is the image of Im(:g) = 0, it is representsd

in an analytic way by

z = z(,®) =x(|®) + iy(?) ’
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and is hence an analytic curve.

This proof breaks down completely if we aliow the free surface to reach
the line y = O, that is, if we allow a stagnation point tc occur on the
surface, for then 2= O and the Lipshitz condition cannot be satisfied. As
Stokes pointed out, the free surface may then have a cusp of angle -2—371 at
this point. This can be seen as follows: Let the point in question bte the
origin in the f—, 2-, and z-~planes, If the slope of the free surface near
the stagnation poinu is bounded away from zero and infinity, then x and y

will be of the same order there, Consequently, z will be of the same order

as 2, that is;
i Py '
z -jéal(f) and A=3 k(%) ,

where Rl and R2 are regular and bounded away from zero in the partial

neighborhood of the origin within the region of flow. For the differential

t term must be the same

(6]

A

equaticon (7) to be satisfied, the order of the fir
as the order of the last. If we substitute the values of z and 2 given

above, we obtain

= &5 . =1 =
%Ry (8 Ry - 28%TR) oL “rg=0 .

where R3, Rhg and RS have the same properties as Rl and R2. The order of
the first term is thus 2¢* -2 and the last term has the order -cA. Consequently,
we require A -2 = - A, ordt= 2/3,
This is not a necessary condition for surface stagnation, for if we
allow x and y to be of different orders, we may have no cusp at all. An

example of this latter case will be given in Chapter V,
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Chapter II

In this chapter we devalop 2 representation for the flow undsr a free
surface, the shape of which is a trochoid (curtate cycloid):/ This particuiar
example is of interest becauvse it is related to an early attempt to find the
exact equations for ocean waves. The original investigation was due to
Gerstner [2] and was later duplicated independently by Rankire [7]. The
main difficulty here was that these waves were rotational.

If one attempts to solve the exact equation of the classical ocean-wave
problem, keeping only terms up to the second order, then one is led to thne
trochoidal surface. (Terms of the first order yield a sinusoidal surface.)
These investigations are due mainly to Stokes [10] and Rayleigh [8].

The approach we will take here will be from the oppcsite point of view
with respect to the classicaltheory. Instead of specifying that the botiom
is flat and then searching for the surface, we will specify that the surface
is a trochoid and find out what kind of bottom will causs this. It is known
that the trochoid does not represent the true ocean wave form. (This chapter
we will answer the question, "What type of flow does produce

shows this.) So

eSS

5

the trochoid as a free surface in the exact irrotational theory?"

t is perhaps helpful to have a possible physical application in mind
as ve develop the theory. One could imagine an infinitely long washboard
with a sheet of water flowing along it at a fixed velocity. The theory might

apply to the flow of water in a ~‘ver if it were sufficiently straight cof

~ /

X/ Fritz John discovered this flow, independently, using a method similar to
that of this paper. His general method, however, treats unsteady flows and
this example was a special case where the flow was made steady. John, Fritz
#Two Dimensional Potential Flows with a Frec Boundary,# Communications on
Pure and Applied Mathematics, Vol. VI (1953) pp. L97-507"

——— e e me




e S

e PR
AR Lt

E

T
'

0090

3
D

kel

£}

34

=

"Eiﬁ}' ¥ AT ¥ R
Sitw L @ $daeik

e st LG

..25-

course, uniform in width and «f proper speed, depth;, and bottom shape.

However, the main practical value of this theory is its possiblie ap-
plication tc the study of ocean waves of great length and small height,
such as those caused bty underwater seismic disturtances. As is shown, the
roughnr-s of the bottom becomes infinitesimal with respect to the roughness
of the surface if the ratio of wave neisht to wave lengtin is sufficiently
small. The flow of this chapter is useful more as an indication of how small
this ratio must be in order to have the =xisting formulas apply than as a
direct scurce of expressicns useful in calculating the velocity of these
waves, for velocity expressions have existed for some time (Stokes) which
yield good results for waves of small ware height to wave length ratio.
This chapter is also theoretically valuable, since it gives an estimation
of how well the ircchoical curve approximates the profile

The approach used here does not r=yuire the determination of a function
}\(C), but ic a direct procedure whereby we continue the flow away from the
given free surface. Recall *hat in the existence prcof we azsumed thzt a
ether with its free sirface. A zonsedquence was that the
free surface was analytic. Now it is known that an analytic function is com-
pletely determined if it is known alon~ a curve. Thus acuirally the »rly part
of a flow that needs to be ziven is *he free surface itself, for then Ly weans
of this uneory wWe are able to extend the flow under this free surface.

There are several metnods applicable to tiais problem of centiruatiorn;
however, they are all variations of the cllowing idea. Since the rreec
surface is analytic, it can be described by an analytic function y = £(x).

But x = 2z - iy, so that from y = f(z - iy) we can solve for y to obtair y

——-en
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as a function of z, y = g(z). If we multiply equation (7) by (g—zﬁ—)z ws obtain

-

aA 1 25y .
e =g- - G o,

whence

-g-;s'{zﬂozi}?d—dzi .

Replacing /? by -g(z) we can solve this differential equation for 3 :.(>(z),
5 g

which is the required flow function., Incidemtaily,if we invert.g = O(2) to

obtain z = 2(§), then R(‘S) = - g(z(£)). In general, to get from the

free surface to the actual flow, one inversion and one quadrature are

necessary.

The usual representatior of a trochoid of fixed wave length 2 {{ , wave

height b, and of variable total deprsssion ¢ takes the form
x=-04*bsiné ,
y=-c *bcos 6,
where we require ¢ > b > 0., The corditicn ¢ > 0 follows from the rsgquirement
that the free surface lies below the x-sxis, that is, A () > 0 for ¥real.
The definition of a trochoid re¢uires ¢ > b. The limiting casec =b =1

will be treated in the next chapter,

Thus; on the free surface we must have

z=-0+bsin@+i (-c *+bcos o),

sl
waere

; in particular,

2= -(-c * b cos 8) .

We note first that
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-J (A-c*l) dO-r(-IObcosQ)do--OObsino-x,
U

so that if we are to have

z--iR*{z—a- - A'ZT df

on the free surface, we must have

x-f/{?lz— - A% ag =-[ (A <+1) a0,

-
We may use this rslavion to determine whatS = 5 (0) must be in order to

weow

yield the trochoidal free surface. To do this, we first differentiate the

equation with respect to 9,obtaining

(- % 8 - Aeenn,

or, squaring,

(= - A9 @312 = A - 2te) A+ (e .

Upon replacing A' by g—a- on the left-hand side, we have
)

v IV RN -2(s-1) A+ (1),
or
@22 - 24 {2\2 - 2(e-1)A ¢ (e-1)? e (-"-dag-)z}2 ;

or 2 the fras-gsurfacaea function ¢ - b cos @, After reduction

(the third degree terms drop out by virtue of the Pythagorian indentity) we have

(g-ﬁ)2 = (2¢c-2b cos ©) (b2 + 1 -2b cos 8).
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In general, this yields a composite elliptic integral for S . However, if

we choose 2¢ = b2 4+ 1, the right=hand side becomes a perfact square and 5

is given by the elementary integral

A
5':[ (b201-2bcose)d0.
(

This special choice of ¢ corresponds to a choice of the velocity of flow along

our washboard. It is quite natural to expect some value of ¢ to be favored,

since we have already fixed the wave length. That this particular value of
¢c is the ®pest" must remain a point of speculation. The numerical work of

tracing stream lines in the case of 2c # b2 4 1 becomes unmanageable.
2
b+ 1

Rough calculations gave a strong indication, however, that the value c = —s
actually did yield a smoother bottom than other values.
In crder to have Im(_'S) < O correspond to the flow region, we choose

the negative sign for the integral and obtain, finally, the parametric

representation for the flow,
Se_ (1P +1) 0+ 2bsine,

2
z2=-04bsin0+1i (-~ 9-%-1 4t cos 6 .

The expression for the velocity is particularly simple for this flow.

We have
4

d> 2
df _ d6_ _2bcos® -(b” +1)
dz dz -1 +bces @ -1 siz 5

LT

LB -b(ef® 4o en L e
—i0 T
] - be
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whance, since the velocity is the complex conjugate, we have

-18
3 = 4 = _
velocity a, + 3 9, 1 ~-be .

Since a flow must be represented by a sirgle-valued analytic function

is

m.ﬂ [o N
©) 2

TS - TS(z), we can expect trouble in the above flow at points vhere
zero, This occurs when
pe™10 . g s
or, letting @ = £ + 1)7 , when
ey} (cos{— isinf) ”% :
Since b is a positive real number, we require g'* 2nTT , and the trouble

spots are hence the points

@ =2nTT + ilo:.;

ol

It can be shown that the flow occurs over a multi-s*te:ted Riemann surface
below these points. This is indeed unfortunate, for the velocity expression
indicates that the bottom gets smoother as we go deeper. However, if we
are to remain in the realm of physically possible flows, we must stay above
the images of these points.

The actual picture of the flow can be made quite easily. We first

pick a value for b, where 2b is the wave height. As an illustration we

will use 2b = —l: . The equations become

2
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The free surface, Im(S) = 0, is obtained by taking Im(®) = O or @ real.

The parametric equations,

X =0+

2{2

9 1
A
E 57

then describe the free surfacm. A set of values appears in Table 1. The
corresponding curve is shown in Figure 1 cn page 31. To find the stream
lines below this free surfacs,we seek values of & =& ¢ i)’) whicn will

4

keep the imaginary part of_‘f a negative constant. ‘fe have

1
12

£=-F (E+3n)
7 /

sin (¥ * i 7))
“ /

) .
--%g + sing cosh ) - i(é—?’- —— cos & sin'n}) ) s

/

[35) R

consequently pairs ( s" A ’7 ) must be found such that

%7 - /{_’;_ cos§ sinh7 -k,

We may pick for k successive values only up to k = .295, for we may not go

beyond @ = 2nIT + 1 log .} ,Whence

kf% log 2"—2_--—1— sinh log 2{27%¥ 295 .
2

In Table 2, we compute several pairs ( ¥ ,7) for k = ,25 and ‘*he resulting

In this particular example of the wave motion, the "bottom™ i= rather
shallow and quite wavy, hence, not very useful in the étudy of ocean waves,

However, by reducing the wave height, we get not only an increase in depth --

S e el L, D
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that is,the singularity in the flow moves down -~ but percentagewise, we
get a greater smoothirgin the bottom. To compare the depth of singularity
and smoothness of botlom for various values of wave height, b, we use the
relations developed above with the special valucs £ - 0,?'7': 7/11 = ~loz » for

the crest of the bottom curve, and g-ff;'a“ 72 (wrere 72 i3 the value of’7

which yields the same imaginary value for'f as ’71 = -log b) for ths trough

of the bottom curve. The quantity & ‘.-7)2 . ’72 +1 - /’1 is then the

®wave height®™ of the bottom curve. Of course, 2b is the height of tns surfacs

wave and

is the distance from trough of the surtacs wave to irough of bottom curve,
this being what we take for ins depih. It is, of ccurse, not the usval
definition of depth, but is, we think, a usaful one for this type of flow,
A table of values of these quantities, together with wave heizht to wave
langth ratio and percentage smoothing, is found in Table 3 for values of

wave heipght ranging from .8 to .05, the wave length being fixesd at 2. &

0f major interest

—:3

composite graph, Figure 2, displays some of this information.

is the velocity of propagation of these waves. Since in the treatment the

coordinate system moves with the wave crests, we must look for the mean

velocity of the water past the observer. Recall that

—> -
q = velocity = 4 + i qp l-te 18 .

Thus, the absolute value of the velocity along the fres surface is

(q&)l/z = { 1-2+ ~ns 8+ b~ (fer © reai) .

The velocity at the crest is horizontal and of magnitude 1 - b, and the
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velocity at the trough is also horizontal md of magnitude 1 + b.

velocity aleong the free surface is f

[

g, =

o, ds

v

3
(V3]

where q is the tangential velocity, here the velocity itseif, since vhe

free surface is a boundary, and ¢ is soi

n¢ length of arc representing a

complete cycle. Since our wave is symmnetric, we may use a half-wave

length. Recall that on the free surface

x=8 +bsin6 ,
P4
y=-2—21—1+bccsg ,
q'=1—e"lg=1.-e":Lg (for & real)
=l-bccse*ibsin9=ql+iq2 3
Hence, T
0
fqldx’qéf dy -f{(l-b cos (-))sz‘ sin2 91(’19
%= c = o_ o
TS w S 5 1/
.r\/dx2 +dy2 r{(la'-: cus 8)° + b7 -si.-2 9)( da
c Jo : /

s 2
-f(lfb - 2b cos ©) do

. o

m 5 1/2
f(lfb-ﬂbcosg) ae
o

The mean

The numerator can be integrated and yields the value - TI{ 1 - b2). The de-

nominator is an elliptic integral and, through the substitution 8 = 77 - 2Y) ,

takes the form
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2(1+b) S (— —9—‘9—5 sin?d a¥ = 2(1+5) E 24’b) ]

le)
<

Thus if w2 take the negative square root in this integral so that the signs

will come out right, we find that the mean velocity of the fluid on the free

surface is

2
,_g_r 10 20Yy -

(13) Q .
(1+5)° T+b

Recall that b is the amplitude of the wave, 2b is the wave height. It should
be pointed out that if we wish to interpret this flow as a progessive wave,
we must make the wavy bottom move right aleng with the surface., Consequently,
it is bettar to think of this flow as a river flowing over an undulating
bottom. If the bottom of a surface-wave flow is flat or infinite in depth,
then it is immaterial whether we consider the waves as fixed and the water

in motion, or the water fixed and the waves in motion. Thus if we wish to

compare the flow of this chapter with classical ocean waves, it is b=st to

o+
D

think of the ocean waves as progressing up a river which is flswing at th

velocity of propagation of the waves. The bottom of the river must bs flat
and the river must be quite deep. It is of interest to compz o valncities
obtained from the various existing formulas with thoses chtained from equation
(13). We consider these formulas for fixed wave length 277 and for ¢ = 1.
The quantity b is the amplitude ot the wave, and the depth is assumed to be

great with respect to the wave length in each case. From the linearized

4

ropazation is independent of amplitude and is equal

to one, Stokes' first apprcximation (yielding trochoidal waves) gave the

velocity as (l*bz)l/‘, and his second approximation, carrying terms up to the




B

1/2
fourth crder, orcduced tle relation {1 + Be 4 g bh for the velocity.

These latter expressions are cempared in the accompanying table with values

of q, from ejuation (13) for various wave amplitudes.

b .05 ol ol .3 A .5 b T 1 .8

(1*b2) 1.0023 1 1.009 [ 1,027 | 1,00k | 1,077 {1.22 | 1.37 |1.22 {1.28

) 1.0013 § 1,005 | 1.021 | 2.0L9 | 1,072 | 1.25 }1.23 |1.2h (2.7

Q, 1.C02 | 14008 1,931 1.066 1 1.215 | 1.18 | 1.28 (1.2 |1.u%

The correspondence in velocities is Quite remarkable. Fer l.rge values
cf b, however, the flow of this chapter canrct oven bte remetels comparsd
with deep-water surfuce waves, sir-~s the Yethem iz very uwavy and onlur o owery
shert distance belew the sorface.

The resalts cf this chapter wovld scem t1 isilicate that either the

m
[
4

a remarkable sirmilarity between flciis cver a wachpeard and deer~-ozsar, Javel,

or the approximatiosns nsed for zzan waves of relatlively larve wmliticde

[tV
"3
m

no’ as accwrabe as supposecd,
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Chapter III

Although the flow described in this chapter can be obtained directly
from the example of Chapter II, we will develop it in all detail in order to
i1lustrate a different method of attack. When one inserts a particular function
2 (‘f) into the expression (8), he is often confronted by a highly complicated
integral. In order to force this integral to be of a simple type, one could
set the integrand ecual to an elementary function. In this chapter we will
set the integrand equal to unity.

We obtain, then, by equation (8), the system of equations
(k) 7 - AT,
(15) z = - iﬂ +jwd3 =_id + %,

Here,z serves as a parameter to commect 2z and gﬁ. We notice that on the

free surface, x is squal to :g. One could set the integrand in equation (8)
equal to any function cf ;zor :?) provided the conditions stated in Chapter I
are satisfied, namely, that the resulting expression obtained by solving the
differential equation for X is analytic in‘g, posibive on some segoent cof the
re=al f;-axis, and satisfies the inequality E%:— - ;%‘ > 0 on this segment.

If we solve the differential equation (1) for ¥, we obtain

(16) ff =\S‘ a A :

e
zx !

Equation (15) can then be written
(17) z=i/1 ,‘)__da__ .

=

J,E;_ = 4
< 3
a3

Yo
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L: - It can be seen from esquation (16) that if Ris restricted to the interval
0= 25 1/2, fis real and varies between two values whose difference is 7T/h.
Thus this portion of the real ¥ -axis will correspond to the free surface.
Equation (1L) assures us that 7;;;— - 2*2 > 0 on the froc-surface segment.
Analyticity is obvious. '

The integral (16) may be evaluated by means of the substitution

;J\- 1/2 cos® 8. We obtain

Z
$=-J <:os2cds;=-%n—-n-—-s”n £ois

and from (17),

; sin 20

z=t-l/2cos O—E ——

where these equations are parametric equations for the flow. With this
change of parameter, the free surface is now represented by real vaiues of
&, and the interior of ¢ ned by allowing © to range over
certain complex domains which will be defined later. The equations may be

forther simplified by employing the idsntity cos @= 1/2 (1 4 cos 28) and
pi 5 J s

substitnting’ﬂ for 20, We obtain

(18) L= -1/ (g sind) 5

(19) 2= - 1/L (f+ sing) - § (1 + cos )
< - 1b [ge i1+ )

The shape of the frea surface may be found by seperating 2z into its real
and imaginary parts; this is possivle on Wi

there., W=z obtain

q
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(20} x = L/h(Z+sin g) ,
y-s-l/’-l(l +c08/3) O

These equations are easily recognized as the parametric equations for a
cycloid.

We must now carefully determine just what part of the cycleid represents
the free iurface. Recall that Qis restricted to the range 0 < Rf 1/2;
consequently, since 2- 1/2 coszo, this corresﬁonds to some © interval of
length T17/2 which we may take to be the interval O <e =< M/2, or in terms of
ﬁ, 0 fp < Tr. For this range oi:ﬂ , equations (20) will describe the
half cycle of the cycloid between x = O and x = - TT/h, y varying from - 1/2
to O. The continuation of this free stream line from/= 0 to/g = ~ TT, arises
from taking the negative square root in eyuation (17). The sczment of the
real ﬂ-axis from O to 1/2 is hence traversed twice. This corresponds to
the segment of the € _axis lying between - T/L and TT/i. In order to
investigate the flow further, we look for the image of the remaining part of
the real § -axis. This will be the continuation, as a fixed boundary, of
the free~surfaces stream line. It is no longer necessary to take /?into
considsraticn, since the p—:\rameter,ﬁ is all that is needad to connect z and
S. We see from equation (18) that the continuation of the fres surface as
a fixed boundary corresponds to a curve in the complex/d-plane along which
Im(4) = Im ZI- 1/L (,B* sinﬁi}will be equal to zero and along which
Re f- 1/h(,64 sir}ﬁ)’} varies between — o and - TI/L and betwean ¥T/L and
+ .

Since we will need the curves for which Im(f )= constant, we will develop
these curves ncw,and then we need or.ly tv set the constant equal to zero in

order to obtain the equations for the continuation of the free surface. If,

in equation (18), we setlg & i’y, we obtain
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Im(g) = Im {-l/h (& + 17) . sw’né‘cosh?* i cos& sinh7 )}
=_-1/h (77 + cost sinh')/")
Setting our constant equal to -i'-f- we obtain, for the stream lines, the
relation
"7* cosgsinh’)}n k ,

whence

“1 k =p.
(21) cosg Eﬁﬁ% gscos s1nh77) :

In order to find the image of these lines in the z-plane, we use equation (19)

with,ﬁ -g + 17 to obtain

e L e s ol o e L
or )
iz = E ¢ 37] sing + i(1 *7}0 e’7ccs g) .
To write x aud 7 as funcilons ¢ parameter, we msy use equation (21)

togother with the identity sin£ = ¢ '1*-003 , which yields

: >
1k -3 f (x -7 )
~lx = cos (——hl;-) s e ’J: - 2
sin/ sinhég ’
iy =17 e ‘;T;J% .

For)f) very large, we see that x behaves asymptotically like e’) and that
y is asymptotic to ‘7. Consequently, for all values of k., including k = O,
The flow is illustrated in Figure 2. Stagnation points occur at the ends of

the free surface where the cycloid meeits the fixed boundary. The anzle here

- e TS Ty
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s is 2YT/3. There are nany branchez tc this mapping, tul the only cne involving
|
b a free surface and lceally positive pressure is the cre shown in Figure 3.
It can best bHe interpreted as 5 ficw 0 wahbor unaer a "reof" shaped like the
fixed bourdarv. In the breai in “he "eucf " the waler arcpc down in the form
of a c¢yecloid.
We find the vrelorcity by tarin. the acenjugate of
ar
e cma T L aos 4
ORI MR R RV (R
dz Az -
wooe
whence
% - _ _
2 =1+ e ’703‘.§ = e 75'.;§ .
] In crder to lnvestigate tLe o220 Clanelhso of L AL n, WE oespaed 2
’ B o5 ., gowsD Seiies s /35 IT . e tave
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and

If we let B-1T = 13’9', then

ﬁ_/ By £ = 0(X ) we mean ‘het IiI < ch&! s K = constant, for all of saffi-lently

near tc zerc.

i S . P B -
b




-~
1
.
|
A

5 gRe

g
ke

8

pass W

o-

3 i34
--!15 ~-IT= .1”7——(%! +O(€.h) .

Now the free surface and its continuations are the image of the lines

Im(3) = 0; hence from

]

)

. )
0 = In(%) = Im(-h5-1m) = {)T sin @' + 0(€ ') ,

. . 2
we see that necessarily sin 38' =0, o 8' =0, + —".?-' s T y see o

Consequently, we ltave

2
iz == ad 'F) «0(ed)

2 . :
=i 228" | ore 3

2
_r° i(2et + YT/2 2 1IT/2
=57 e /)-rC‘(é); 1= el .
Thus in the neighborhood of @=TT, that ieg, when € —» 0, the argument of

-Lz -3, when z is tracing oot a strezam ling, c.n assume the walues W/2, 7 1/3,
and -W/A. Tre tranch corresponding tc /2 ic the cyclcidal free surfacz, and
the branch correspondiag to ~ W/6 is the ®roci.™ The third branch, correspond-
ing tc 7TI/&, yields a fleow which, for positive pressures, has no free surface

i

at all. In order to seec exactly what ic hanpening rear a branch point, It ie
sometimes coavanient 4o follow a rzarhr stream line.
It is often hzlipfl to trace out verlicus sirean lines in the parame-er

plane by compcsition of grachs. For examplzs, In this [low we are Interested

in the lines for whizh

In(-LZ) = N~ siuh Mo s § = constant , A= £+

=
)
.

Cnz plo%s on the same graph thte 1lres = constant and the lines

sirh 7) cosg = constant fcr equally spz-ed increments. B joiniwg

or
g
©

intersecticnc where '7 + sinn 7/' c>s§ = constant, we construct the .mazr:zs of




S

the stream lines. Wipure L illustratec this orocedure,
For a flow to be physically realizable, we must investigate the pressures
involved in the flow to make certain that they are positive. In order to

do this we consider Bernoulli's law in the form

constant - & = 1/2 q2 + Im{z) .
If the pressure is to remain positive as we go deeper into the flow region,

the quantity 1/2 q2 4+ Im(z) must become large and negative thera. In the

case of this example, we have

1/2 q2 =1/8 (1 + 26-)7 cos £ + e"'27 ),
and

Im(z) =y = -2/L (1 0'7 49.77 cos &) .

The velocity term decreases to 1/8 quite rapidly as we go into the flow,

since 7 increases there (see Figure L), As lcnz as y is nepative, the pressure
is positive, but if y is large and positive, then the pressure will become
negative. The latter is true when we are near tis ®roof” and far out on

either side; consequently, this flow is not physically realizable in the

large.
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Chapter IV

As was mentioned in the introduction, one cannot hope to pick the one
function A (5) whichwi1ll solve the ocean-wave problem unless the class of
functions under consideration is restricted considerably. In this chapter,
we will consider the influence that the problem of surface wavez over a deep
ocean has on the selection of the function A (f;)u First we will show th
under certain assumptions, 2 ( '5) must bz a function which has singularities.,
Then the exact location of these singularities will be determined and the
behavior of A(¥) at the singularities will be found through the use of
conformal mappines. We will gain encugh knowledge about, A (fg) to enable
us to obtain a good approximation to the solution of the problem of waves
over an infinitely deep ocean. An example is given iliusirzting the resulis
of these considerations,

In order to establish our theorems about the behavior of 2.(1?), we must
make an assumption concerning the physical flow., We assume that the waves
are symnetric, in fact, that the whole flow is symmetric about the perpendicular
line passed through the crest or trough of the wave. When one considers

here are no external forces acting on the surface -- such as

ct
(o

he fact that
winc -~ and that the water is frictionless for the purpsses of this theory,
this assumption of symmetry seems quite valid. A consequence of this symmetry
is that within the irame work of this theory, all velocities are bounded

and bounded away from zero. This does not mean that in the actual ocean

zero velocities are not possible, for it must be kept in mind that our frame
of reference is fixed with respect to the waves, not with respect to the water
at great depth. Thus the fact that the velocity of the water is bounded

away from zero means that in an actual ocean, the velocity of the water never

———————
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attains the welocity of oroparation of thz wave. This ascumption appears,

from cobservation, to be valid as lorg as the wave does not "break."” The

breaking of 2 wawe spparently occurs when the welocity of the maier at tle
. £ Y4
crest of the wave exceeds the wvelscity of propagation of the wavey

The fact that the welocity is bourded has the same meaning with respect
to either frawe of reference.

&s a result of our zssumption of symetry, we can show mot only that
the wTelocity is bounded and bounded away from zerc in the ertire flow region;
we can determine the asyrpntotic J‘evelopment of z = z(<) near infinity as
=wsll., Suppose we consider the re~ion im the z-plans bounded abore by a hzlf
cycle of the free surfzce joining the trough to the crest of the w=ve, and
on the sides by the two sem-infinite vertical lines dropped from the trough

ard the crest of the wavs. These wertiical lines are, as a conseguence of

our assumption of symmetry, or:hogonal %o every streanm line, inciuding the

: hencs the recion defimed atewe in the z-plane maps into

L

s A}u T TN e Y L o

a region in the 3'—plane ®wnica is bounded on tcp ©F t image of the free
surface, that is, by a segment of the real L{—axis, and on the sides by
lines that are ewerzshere crthcgonasl tz the images of the strear lines. But
then these lines must also be werticzl suraight limes dropped from the ends

of the segment of ths real 5’-ax:Ls that represents the half cycle of the

free surface in the z-plane. We shall call the region in the z-plane, and

e Sickes has cstimated that 2 wawe will orezk when the ratio of wave height
to wave length approaches L:7.

A
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its image in the i§~plane, a "cell” of the flow.

We will locate the cell in the z-plane so that the vertical line under
the trough of the wave coincides wiih the negative imaginary axis from
z =-13b, b> 0, to 2 = ~ 10, and the vertical line under the crest of the
vave runs from z = d7T - ia, 0 <a <b, toz = dM - 1. In the f-plane,
the cell will be bounded by the segmert of the real fg-axis joining the
origin to the ;oirﬂ;fg & c7T: c > 0, and the two vertical lines dropped from
'these end points. The origin in thefg-plane shall correspond to the point

Z = - ib in the z-plane. Figure 5 on page 62 illustrates the cell as it

?

appears in the z- and ) —-planes.
-iz/d

We now map the cell into two new regions by thz meppings w = e and

: @ /A
v=e "?’%, In the v-plane, the cell 1s mapped into the reyion bounded by
of

the semi-circle of radius 1 lyinc above tne real v-axis. ind the segment

the real v-axis joining v = - 1 to v = ¢ 1. The image of the cell in the

w-plane will be bounded below by a segment of the real w-axis joining
w=a'tow=Db', -1 <a! <0 <b' <1, and above by a smooth arc leaving
the real w-axis at w = a' vertically upwards and arriving at w = b’ vertically

dowrwards, such that all points on the arc are less than unit distance from

the origin. The image of the cell in the v- and w-planes is illustrated in

Figure 6. The point at infinity in the z- and :§~p1anes has as its image the

origin in the v- and w-planes, The cell walls correspond to the segments
of the real axes in the v- and w-planes.
If we consider the domains in the v- and w-planes as being connected
£ .
by the mapping <= Ei(z), which we assume as known, we see that w as a
function of v is real on the real axis and consequently can be extended into

the lower half-plane by the Schwarz reflection principle. By the same reasoning,
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we can extend v into the lower half-plane. These extended domains are the
unit circle in *the v-plane, and a region bounded by a closed smooth arc in
the w-plane containing the origin, but contained in the unit circle. Thus
through the mapping :{= Tg(z) we can connect these extended regions in the
v- and w-planes by an analytic function w(v) which is schlicht within the
image of the cell, and transforms the origin of the v-plane into the origin
of the w-plane, and the positive direction of the real axis at the origin

in the v-plane into the positive direction of the real axis at the origin in
the w-plane. Since the mapping is schlicht, the derivative, g% , is bounded
and bounded away from zero within the image of the cell. Furthermore, the

quantity % is also bounded and bounded away from zero within the entire image

of the cell, since at w = v = 0,

.V dv Wy
lim = = _fJ = () _J
w aw. dv =n ’
W0 w=0 w=0
and ve know that %% j.s bounded and bounded away from zero, But since
1 _.de _d v aw
c w dv

o dg
it is clear that provided ¢ and d are finite and non-zero, the velocity, q,

of the flow will also be bounded and bounded away Iirom zero.

The mapoing function w(v) will have the form

2
w = a1 v ¢ a2 V' %e.0,

where 3y is real and positive, and the series is convergent for :v <1l., 1If

. =35
we replace w and v by e iz/d and et /cprespectively, we obtain
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Taking the logarithm of b=zth sides, we find
. a .
-1 % = log (a1 a 370) + log (1 + :Z e-l'jyc + ...,

"1

whence
da .
(22) % = id loga1*g$*i——2 e-lf/cf... .
1 ¢ a
1

Finally, we have

: a

__i- -_-% -g»g :ESelf/ci..,;

q \A) ~ - nl

which shows that the velocity at infinity is 5 .

Since velocity = (%SL), we may conclude that in the eguation
; ! 1
() 2 (2042 2 =

the quantity z' = %/gég is also bounded and bounded away from zero ir the

entire 1egion of flow. We can now show that the function ;?(:5) rmust have a

or,

singularity in the finite part of the flow region of the fymplane. e
1
A <ul$

M and N. If me solve equation (7) for A', we obtain

4 N in this region for suitable constants

will first show that

(23) d? = 1 _Z_' )
B d$ Lizt 4 21 °

From the form of this equa*ion, and the bound on z° from above and below,
we see that the right-hand side of the equation is bounded by some constant

M as soon as AAis bounded away from zero, But then

— e’ damm
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in the region of the cell excluding some circle about 2* 0. The inequality

< M + N, N = constant,

is obviously satisfied within the circle about 2' 0. Consequently, /{
cannot increase any faster than fand is hence finite in the finite part of
the flow region.

Now for a flow in an infinitely deep ocean, the entire lower half of
the f-plane maps into the flow region, and the entire rea15 -axis represents

the iree surface., Therefore 2(5) is real along the entire real f—axis

4+ N in the lower half of the f-plane.,

and is defined and bounded by M lg
As a consequence, according to Schwarz's reflection principle, we define

2 (5) in the entire upper nalf-plane in a unique way by setting

2 = ?—?—(_g—; there. Thus 2 is defined and bounded by M If 4 N in the entire
‘b'-planen If we were to assume that R ('5) were also regular in the entire

5—p1ane, then by an extension of ILiouville's theorem, ;(must have the form

/?= A‘g‘* B, A and B constant.

2

But this choice of the tunction ’2 ({) cannot yield a solution to the surface-
wave problem, for it generatec a2 fres surface which is not even periodic.

Thus we must conclude that Rcammt be regular within the region of f.ow,

We will discuss the type and location of the singularities of /?(f) in more

detail below.

n consider equation (23) 2nd use the fact that z!' is bounded,

1 aa -

TE wrrn Armvans
ey wno QA CAk
we see that if R= 0, then necessarily /1' = o, that is, 2('§) is singular
zt the image of this poirt. Thus if we are to prevent any stagnation points

from occurring in the flow, we must require that 71,— - 3—75; =0 at 2 = 0,
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We now turn our attention to the ;?—plane and try to construct the image
of the cell there. The part of the boundary that corresponds to the free
surface is clearly a segment of the positive real axis, for we require ;?(Zg)
to be real and positive when's belongs to the free-surface segment. To find
the remair 1g part of the cell, we return to the differential equation (7).
As we move along one of the vertical boundaries of the cell, dz and d:g are

both pure imaginary; consequently, along one of these lines g%r is real.

This implies, in effect, that the velocity 32 is real along the vertical
wall of a cell. If we write I for known imaginary quantities and Rl’ RZ""

for known real guantities, then on the sides of the cell equation (7)

takes the form

d;i)_l
I [

Rl (R2 + 2i
or, since %% is real, we have
R30th2-—%-7 .
Thus it seems that;l)is real along the walls of the cell. That this is the
case is a consequence of ths uniqueness of the solution of eguation {7),
If one starts from either end of the free-surface segment and integrateé
down the side of a cell, one finds that in determining the successive approxima-
tions of Chapter I, page lh, all quantities, including the initial values,
are real so that necessarily A is also real along these vertical walls of the

cell,

We ¢ call houndary in the él—plane is partially composed
of the real )?-axis to the right of the free-surface segment, and the real
)a-axis to the left of the free-surface segment up to the origin. At the

origin of the )z-plane we must have a singularity, for as we found in the
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discussicon of itihw non-regularivy of A, it is necessary that a-i =0at A=0C.

If we solve equation (7) for /2‘, we obtain

z !

(2k) A ‘ﬁ?— (—l"é— "2) o

As we move downwards on either side of the cell, we havse 4% = id ’\}/, d I’f< 0,

so that, since z' and ‘A are positive near the free-surface segments, the

sign of 4@ A agress with that of ,2. - Lr—' . But on these walls of the cells, the
2z!
, . .. d3 _ 1 . p
velocity, q;is real and equal to = - o 3 consequently, the sign cf d agrees
2

with that of 7— -29~ . As will be shown immediately, the velocity must decrease
as we muve aown the cell wall under the trough of the wave, and increase as
we move down the cell wall under the crest of the wave. At the trough of i
Wave, ;{' and hence d,? are zero by virtue of the form of Bernoulli's law on
the free surface; namely; %q") = - vy, and by the fact that /’? = —y on the free
surface. Thus /? is stationary there. On the other hand, q decreases as wz2

leave the trough and proceed down the wall of the cell. Consequently,

2
,R -3 . becomes positive as we leawve the trough. Thus d 2 is positive and

A

fiis 1 But if q is decreasing and /)L is increasing as we move down
the wall of the cell, then d 2 will remain positive  As a result, 2 must
continue to increase until we reach a singularity. The right-hand side of
equation (2L) is regular along the wall of the cell below the trough of the
wave, and hence there can be no singularity in /1 along the positive real axis
to the right of the free-surface segment, with the exception of the point at
infinity., Thus the wall of the cell below the trough of the wave maps into
the real axis in the R-plane lying to the right of the point Z- be.

Below the crest of the wave, just the reverse holds. Here q is incrcasing

2
so that the quantity 2- -% - will chenge from zero to a negative quantity as

——— e
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Yo leave the crest of the wave and move downwards on the wall of the cell.
Thus d;% is negative and 2 is decreasing. Again, with ) decreasing and q
increasing, d;l remains negative and consequently,Z‘will continue to decrease,
st a rate bounded away from zero, until we encounter a gingularity in equation
(2L). This singularity occurs when ;2= 0. Thus the segment of the real axis
from 2= a to 2- O corresponds to part of the cell wall below the image of
the crest of the wave. This proves that )?(:3) has a singularity corresponding
to ;}- 0 which occurs directly below the image of the crest of the wave in

the f-plane. Since we know that necessarily g—/%- = 0 at 2 = 0, the image

of the cell wall in the ;?-plane must turn upwards at this point, We are
unable to find the exact location of the cell wall beyond the point ;%= 0,
however. If we could find it, the problem ot ocean waves would be virtually

solved.

We will intestigate this image further after we have shown that q increases
as we move down the cell wall below the crest of the wave, and decreases as

we move down the cell wall below the trough of the wave. To show this, we

must assume thail the wave rises continuously from trough to crest. This is

surely the case for a simple wave., If we consider the vertical component of
velocity, qay, we see that it must be positive on the free-surface segment

and, as a consequence of our assumption of symmetry, it is zero along the

cell walls and at infinity. But ¢7y is a harmonic function, and consequently

it must assume its minimum on the boundary. Thus Q’y > 0 within the cell.
Furthermore, if a harmonic function assumes its minimum within a region, then

it is necessarily ccnstant. Consequently, 90y is actually positive within the cell.

If we move infinitesimally from the cell wall below the trough of the

wave into the interior of the cell region, then we are moving in the directiion
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of increasing x and increasing ?yo Consequently, éyx > O on this cell wall.
Conversely, if on the cell wall below the crest of the wave, we move into
the interior of the cell, we are moving in the direction of decreasing x
and increasing 'Gy' Consequently, -e)yx < 0 on the cell wall below the crest
of the vave. But @ = @ . so that @ > 0 on the cell wall below the
yx xy Xy
trough and ﬁaxy < 0 on the cell wall below the crest. This is Jjust our
agsertion that the velocity, which is equal to ©:: on the cell walls, is
decreasing as we move down the cell wall below the trough, and increasing as
we move down iLhie cell wall below the crest of the wave, since when we ars
moving downwards, we are moving in the direction of decreasing y.

Although we cannot find the exact image of the cell wall beyond /7 =0
in the ;‘-plane, we can assert that it must lie in the [{irsi Quadran
must be an analytic arc. We will show that, in general, /? (‘5) is schlicht
and possesses no singularities within or on the boundary of the cell besides
the one on the cell wall belcw f = cTrand the cne at f = ¢ which have already
been mentioned. We will consider the mapping from the z-plane to the ?—plane.
Since the mapping from ihe z-plane to the S—plane is regular and schlicht
in the entire region of flow, what we assert for /?=/2 (z) i1s equally true

for A= R(Z(f)) = 2(5).,

If we multiply equation (7) by the quantity A (%5)2, we obtain
dAd _1 4352
(25) Avaddd 2622 .

: a¥
On the right-hand side of this equation, we replace T by ¢x -1 ? .

] -~ o]
On the left-hand side, we set = ﬂl 41 /A, and dz = dx 4 idy. We will
consider the behavior of the imaginary part of equation (2¢) as we move

vertically downwards in the z.plane, that is, for dz = idy, dy < O. Under

Il s
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this restriction, the imaginary part of the equation is

(26) Apr2E (A2)--5 %, .

e

We have already secen that (Py is positive in the interior of the cell

and on the free-surface segment. We know from symmetry that ¢y is zero on
the walls of the cell; consequently, since we have shown that the velocity
is bounded and bounded away from zero, (Px must have the same sign on each
wall of the cell as it has at infinity. We have constructed our frame of
reference so that @x > 0 at infinity, and hence ‘/f.’x is positive all aiong

each wall of the cell., If we assume that the free surface does not have a

P
vertical tangent, then Px is alsco positive along the free-surface segment,

T - (ﬂ 2 o - -
Conse ucutl 15 sitive on t}‘
a7 5 w

minimun principle for harmonic functions, @ % is positive throughout the

interior of the cell. Therefore the product ? ? is positive in the
x Iy

interior of the cell and on the free-surface segment, and zero aleng the

vertical walls of the cell,

Suppose now that we start from a point on the free surface in the z-plane
- ~
and move downwards. We wish to show tnat Al and A > remain positive on any
such vertical line dropped from the free surfare other than the walls of the

cell., TFrom our construction of the image of the cwll in t! ?=pla"°, we

imow that R » is zero on tne free surface and that the region of flow lies
above the free-surface segment in the A-plane. If we write equation (26)

in the form
(27) SN AREE S IRV A

we see that, since ¢x ¢y is positive throughout the region of flow, and
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since /?1 is positive on the free-surface segment and /?2 becnmes positive
as we leave the free-surface segment snd enter the interior of the cell,
the quantity % (21 22) is negative as we start to move down a vertical
line below the free surface in the z-plane. Because we are moving in the
direction of decreasing y, this means that the product 2122 must be increasing.
Now ﬂl > 0 on the free surface, ,22 = 0 on the free surface; consequently,
2 122 becomes positive as we leave the free surface. As Tong as ﬂz is
positive, equation (27) shows that 2 1/?2 will continue to increase. Consequently,
we can assert that 22 cannot be equal to zero in the interior of the cell,
for if it were, then the quantity 2122 would have to increase to zero
through positive values, an impossibility. With ,?:? positive, 21 /{2 is
constantly increasing so that we may concludea that 11 is aleo mositive
throughout the intericr of the ceil. Thus the imapge of the interior of the
cell lies in the first quadrant, and ) is non-zero in the interior of the cell.
From the form of the differential equation{23), we see that /?can have a
singularity only at points where ﬂ= 0 or at infinaty. We have seen above
that Hcannot be zero in the interior of the cell? consequently, if A is also
finite there, a fact that we have already established on page 50, then /?
must be regular in the intericr of the cell,

We have already seen that 2 cannot be zero on the wall of the cell
below the trough of the wave. We also found that ;\mu_st be zero at a point
on the wall oi the cell below the crest of the wave. We will now show that
/{ nas only this one zerc on this ccll wall. As was pointed out earlier,
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start from the image of 2= O on the wall below the crest of the wave and

move downwards in the z-plane, equation (27) assumes the form
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: 1
“% (A A)=-3 A -
0

We have alresady established the fact that ;‘l and /1 o are poditive within
the cell. Consequently, on the boundary of the cell 21 > 0 and 22 > 0.
As we leave the image of ;{- 0 in the z-plane and proceed downward, /’2 >
must assume positive values, for otherwise the cell boundary would double
back on itself, and since the interior of the cell must lie to the right of
the boundary, we would contradict the fact that 21 and ,2,2 are positive in
the interior of the cell. But if 22 becomes positive, then as seen before,
the quantity /"}1 22 must be increasing. Consequently, /?1 cannot remain
zero as we move away from the image of /?= O in the z-plane, but must alsc
becoms positive. As long as /7? is positive, /?1 /?2 is increasing. Thus
R cannot be zero again along the wall of the cell below the image of /?= 0.
Even mora is true, namely, if the quantity /\{1 22 is constantly increasing,
then the image of the cell wall beyond )= 0 must intersect every hyperbcla
Rl /?2 = k from left to right.

Since 21 ,22 is the imaginary part of /“2’ we see that the image of the

12

cell wall in the A" -plane is alwaye rising. Consequently, in the mapping

i
2 v 12 " =
from z to ﬂ or from S to /17, the points on the boundary of the cell map

into each other in a one-to-one continuous manner. But if this is the case,

the mapping is schlicht in the interior of the cell as wellz/ If the mappings
=
from z to /?2 and fto R2 are schlicht, then so are the mappings from z to q

and Sto ;(.

That Ris bcunded in the finite part of the S-plane, and hence can

/
% See, fcr example, Titchmarsh, The Theory of Functions; Oxford, 1932, p. 201,

- 3 o e = = s

d
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have no poles in the finite part of the "S—plane, is an immediate consequence
of equation (23), as was pointed out earlier. This completes the proof that
the function ;1(5) can have only one singularity in the finite part of the

cell in the g-plane, and that it must have this singularity below the image

of the crest of the wave. Further, we have seen that R ('S) is a schiicht

funcsion in the cell.

f M'ﬁl& N for la-ge values of /?. WNe

We have already shown that ' R

] . €
will now show that /1 becomes infinite like — at infirity. If we multiply
equation (2L) by Ziﬂ, ws obtain

2
A - . dA 1
2', 3t = m— - ! o—— o A
1 RA 1 dj Z ( 22'2 ﬂ)

At the trough of the wave, we have seen that /\is stationary 2nd thai {he
velocity decreases as we move down the wall of the cell below the ircugh.
As we move down this cell wall, a8 = idx,f, dV< 0, so that Az is increasing

2. N
if - = —3— < sithere, As we have seen, this is indeed the case. If
221"

ﬂ is increasing, so is , for A is real and positive on thz cell wall
below the trough of the wave. With/? increasing and -%— decreasing as we

move down the cell wall, we are assured of finding some positive constant

Ml such that

a-e

U
n
N

or, since af = id,\ff, dY< 0,

2
ii-dz.?l le for2> b .

Consequently,
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Since '\ffbecomes large and negative as we move down the cell wall, ,2 becomes

* M2 s M2 = constant.

/
large and positive with at least the order of S 1’2. If we write equation
(7) in the form
d : 1
(28) R’ (2’2111)‘—-?—;(77 )

we sap that

1 2+ 214 =f o (|$]7/% ag -0 (|¢]3 .

We have already seen by equation (22) that for large values of 5 .

Pt z‘-'-g-'ﬁ*O(l);

e e e

consequently, we may conclude that

21A--3840 (\5!1/2) .

£ R T IR RN
{ %5 4*

By reinserting this estimate into equation (28), we have that

S Nl

i _. . -1
%(29219\)=u(i§‘ ),

from which we ma:" conclude that
24217 =0 (1og!§!) i
o Thug near infinity

F»‘ ﬂ"%Z’O(log Sl)
=y

. . 2 1
=5 2540 (log| 5] -
Thus we find that not only does 2 become infinite at infinity, we see even

the bahavior of the mapping near infinity. Thewidth of the cell in the

i
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ﬂ-plane is just half the width of the cell in the z-plane as we move off
to infinity. Since the width of the cell in the z~plane is one-half wavelength,
the width of the cell at infinity in the ﬂ-plane is ]1-' wavelength.

Finally, we shall establish the behavior of 2('5) at the image of R= C.
We find that we must have a square root singularity at the origin in the ;\-plane,
that is, the image of the cell wall turns vertically upwards there. TWe

start with the differential equation (23), but write the right-hand side as

a single fraction. We obtain

A _2u?A-i
d< Lz' 4 °

We now invert this differential equation and consider it as a differential

et e € - Aax:i._ _»o W Ao
Squavilil 1017 a5 @ 1unCuvavll Ui rioe "G 11avo
(29) -~ hZ‘ A

This differential eguation is regular at R = 0 and consequently will have

a regular solution there of the form

$aS wea Ava, A2al,

2

From equation (29), we see that g—g; = 0 at )"- 0, whence a; = 0. Also, -3—25;-

has a simple zero, so a, # 0. Thus near /’l= O we have

'S’_ '50 = a, ;{2 4 aj /ﬂ{3 “eoey

~

which proves that the singularity at /( = 0 is a branch point of the first order,
This concludes our investigation of the function R(S’) for the problem

of ocean waves over an infinitely deep ocean. We have found that in the
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;z-plane, the cell boundary is composed of the real ,R-axis and a curve which
leaves the origin of the ;l-plane vertically upwards, turns immediately to
the right and asymptotically parallels the positive real )Z-axis at a distance
above it equal to one-half the width of the cell in the z-plane. W .h this
information, we are able to construczt a free-surface flow which, because oi
our lack of knowledge of the image of the cell wall beyond ;1’ 0, is not the
solution to the problem of ocean waves, but which does yleld a good approxi-
mation to the soiutior to this probien.

We are concerned only with the mapping connecting the :f; and.;Q-plane,
for this will determine our choice for ths arbitrary function ;2(.$3, We
assume that the ends of the free-surface segment in the i and /Q-planes
ively,0 and ¢ 71 , and a and b. The cell boundary in these two
planes is illustrated in Figure 7, page 62. The singularity at the origin
of the :q-plane is of thes order of er:

In order to dstermine the mapping function, it is more convenient to
1otate the Tg-plane into a w-plane, 90o removed from the f;-plane, by the
mapping w = i Tg. Further, it is more convenient to rlace the singularity
corresponding to ;?= 0 in the w-plane, s5 that we can map a polygon in the
w~-planz into the real axis of the ;1-p1ane° Figure 8 then illustrates the
figures tc be joined. We must map the real axis of the ;z-plane into a
polygon in the w-plane thdt is composed of the real positive w-axis, the part
of the imaginary axis between the origin and the point ic YT, the line
Jjoining icYT to a peint k ¢ ich., k > 0, and a ray leaving the point k + icTT
in the negative rezl direction., We will require the vertices of t*»: polyyon
at the origin and ich'to correspond to two positive points, b and a, b ™ a,

on the real /q-axis,respectively° The vertex at k + icYr will correspo.d
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to the origin in the /’{u-plane. A value for k cannot be assigned -- its value
is determined by a and t,and c.

Since w2 zre mapping a polygonal domain onto the upper half-plane, wc
may employ the Schwarz-Christoffel transformation. The angles at the origin
and at the point icTT are both equal to TT/2. The angle at k + icTT is
equal to - TF'. Thus the Schwarz-Christoffel transformation takes the form

el AA-0V2 Qw247 48,

4

where A and B are evaluated by the point correspondence 2= b—>w = 0;

2 = a—>w = icTl . We integrate the transformation and obtain

. . \ ‘ _
w =A(,{(A- a)(A-1b) +(asbv) log (JA-2 +4A-0v) {+B.
\ : ) J
The required point correspondence yields

2c

asyu ?

A= B=-c¢clog (b -a),

w4
whence, returning to g b; means of the relation 5= - iw, we have

(30) Te-BS fA-a(A- v - 2 108(VA- 2 + VAZ D) + dc log(b-a)
4 - e A0y |
= - ic {aib 'k)-a)(/?-b)‘log(—‘r;l-g—i/( b)- .)L

This last equaticn, or rather its inverse, is our choice for the arbitrary

LAY

function A= 2('§)°

We must now check if this choice of the function 2(§) satisfies the
necessary free-surface conditions, The mappinr 1t521f takes care of the
/
requirement that 1 is positive for freal., That ?_1_2_ > 7\1’2 on the free

surface-segment can be verified directly. We have
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(31)

.l

and, consequently,

(32) A= (g_é‘_)z - f(as zi (;{2- a)(A-b)

v

Thus the inequality £ '“ becomes
2'7 =

{a ¢ b)> (A= a) (A- b)

1 >
2,’{ - c2 ;{2

orl,. Tincer @ =g < ,2‘ b on the free surface, we have

-

(a *+ 1) (A= a) (L -A)

249
ZA

The right-hand side attains its maximum for R = Tab , where we must verify that

2. (a*1)? ({30 -a)(b-438) _ [(a #b) (46 -1D]°
- 2 Jab e

We will choose a ¢+ b = 1 and ¢ = 1 for reasons to be given shortly. Thus
with this restriction on a3 and b, the f{reewurface condition is satisfied.
. . 2
To find z as a function of;{ we must compute \5§—) and d¥ as funciions

of /7, The first, equation (32) has already beer. found in connection with

the free-surface inequality. From d § = /,{ d')s and equation (31), we have

2ciAdA
(a *+ ) U- a)(A- b)

d¥ = -

Consequentl,
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1] ﬂl L @)’ (Aa) A _2eiAad
A he® A° (a%v) (A —a)(A-b)

- (as)] A * ab

- a‘b)
(33} —i}-j TA-a)(A-5) aA .
From our form of Bernoulli's law ard the fact that ;}= - y on the free surface,

we see that the velocity at the trough of the wave (i.e., for,a = b) is 42b

and the velocity at the crest of the wave is Ian If we compute the

quantity q = % = g—-s%-/g—z,\— and take its limit as 7\—-—)00 along the real

axis, we obtain

hat if our flow is to represent a true physical

ot

Now it seems gquite logical
flow, the velocity at infinity must be some intermediate value between the
velocities at the crest and the trough of the wave. As it is not generally
known what intermediate value should be taiken, we will let the wave degenerate
into a flat surface, and then equate the flow on the surface with the flow

at infinity. Thus we set a = b and-obtain the relation

If we set ¢ = 1, this is satisfigd for b = % . Consequently,in the cass
c =1, if there is no wave at all, the velocities at infinity and at the
free surface are equal if they are both equal to one., It seems logical,
then,to reguire the velocity at infirity to be equal to one when there are

waves on the surface. Consequently;we set a +# b « 1. With this restriction,
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the velocity at infinity becomes the mean sauare of the velocities at the
crest and trough of the wave.

We are now ready to compile cur formulas and ccmpute the actual flow.
We note that since the flow regicn ic above the real A-axis, the arguments

of A- b and A- a change from zero to YT as we pass over the points b and

a, respectively, from right to left. Consequently; \/—?\- b becomes 1 \/b -2

as we descend past b, and \jl- a becones i \/'a - A as we descend past a.

Therefore, the varicus branches of the mapping in the z-plane are

A__
=4 A -1 f\/;:—:%;-((% dx , for A > b,
b
= -1 « [\} x+a)(x~rb) R forafﬁfb_.

! ey (o-x)

N
n

N
[l

and

for0 <A <a.

By

By means of these formulas, we may compute z for values of A aleng the real
A -axis. Thic ccrresponds to computing z along the walls of the cell, uvp to
*he singularity at A = 0. The integrals can be reduced to the sum of an ele-
mentary integral; an incomplete elliptic integral of the first kind, and an
incomp ~te elliptic integial of the third kind. Unfortunately, this latter
integral cannot be found in tabulated form. It was necessary to compute these
integrals by machine in order to learn anything about the flow. The data that
were compnted yielded the shape of the free surface and the points of inter-
section of the stream lines with perpendiculars dropped from the wave crest

and wave trough.
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To find the points of intersection of the stream lines with the vertical
cell walls in the z-plane, it is necessary to compute pairs of values of A --
one less than a and the other greater than b -~ which yield the same value
for the imaginary part of ﬁ . The two branches of the function \_'5 = ‘:(rA)

(equation (30)) to be used in this calculation are

: - 2
T =-1i {a i—S \ﬂ'}\- a)(A-b) + log (A- 2 :\/aﬁi-a) , for A > b,

Loy
ana

A

b4

(Vb -2 +Va = 2)°>
D -

a

mo {2 Je-ne - -

a
for 0 <A< a.
The point in the _ -plane that corresponds to } = 0 is hence
5 = Tr-i{%‘[a—f— +logM} .

.
b -a

As the wave height diminishes, that is, as b = a—~» 0, this singularity moves

=2~ . A5 in the case of the trochoidal flow of

Chapter IT, the flow has; in general, nc physical reality beiow the stream

off to infinity like log

line that passes through the image of 7\ = 0 in the z-plane. Since

dz
dA
in the neighborhood of 'A = 0. Thus we canmnot find the complex potential

=0 for "\ =0, we cannot invert z = z(9) into a functicn A = A(2)

T B (A(2)) in this region.
It is interesting to note that the inversion of z(‘A) will always

be

impossibic at A\ = 0 if we are to reyuire that all velocities are bounded
Z

and bounded away from zero. Recall that at A= 0, we require 3—"7 =0 if

the velocity is to be bounded away frem zero. In order to be able to in-

vert z = 2(A ) at A= 0, we must have -(Td%— #0 at A =0. But then




which contradicts the fact that the velocity is bounded away from zero.
In the example of this chavpter, ths vwlocity at 3 = 0 is equal tc 2 4Ab.

For the actual computation, a wave height of .2 was chosen, so that
a=.iand b= .6. The results of the ngmerical integration can be found
in Tables 5 and 6, and the resulting flow is 1llustrated in Figure 9 on
page 69 . This wave is a slightly better approximation for shallow water
waves than was the trochoidal wave of Chapter II. In the case of the
trochoidal wave, the strasam line through the singularity atta»- 0 had
a "wave height" of .0585 units when the surface wave had a wave height
of .2 units. The corresponding figure for the example of this chapter
is ,OllL units. The wave length and depth are approximately the same for
the two flows,

It is interesting to note that the wave heights (A y of Tabla §)
of the individual stream lines do not decrease monotonically as we move
down away from the fres surface, but exhibit a small oscillatory behavior.
This might indicate that the velocity of the wave should be chosen slightly
differently. On the other hand, it might bs that if one could accentuate
this osciliatory action, one could obtain a flat bottom at the minimum of
the first oscillation, thus obtaining the exact form of waves over shallow
water.

If in equation (33) we were to choose a value of ¢ that would make
ths numerator a perfect square (02 - % [#& +7/5] [a + b)), then the
resulting flow is the trochoidal flow of Chapter II. This trochoidal flow
has the property that the velocity at infinity is independent of the wave

height, if we hold the wavelength constant.
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The cell in the z-plane. The dashed lines

are not, plotted stream lines but serve only

to join corresponding known intersections of

the stream lines with the cell walls.
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Chapter V

We turn our attention to flows that are non-periodic in nature and
. which have vertical fixed boundaries that ars infinite in extent. The
vertical fixed boundarims are obtained by forcing the continuation of

ths free surface to be vertical. If we again consider the differential

equation
1
2A °

we can determiie, to some extent, what i.ype of function A (f) must bs

(7) 2 (z'*Zi}\’)-

chosen. Since we are considering a vertical line, dz is pure imaginary,
and since this line is an extension o the free-surface boundary, we are

i on the real ¥ -axis, and d35 is real. Thus, substituting the symbols

2

> Rlp Rzg R.* for real quantities and 1 12 for pure imaginary quantities,
= 3

! equation (7) takes the form

T
k.
%

Tl

dA 1
T_-L(I2021'E)'ﬁ' s

or

on the wvertical fixsd boundary. Comsegquently, if we start from the fres
surface, whereA and 5 are real, and integrate along the real vertical
fixed boundary, the solution A (‘S) must be real by virtue of the fact
that the coefficients of the differential equation forA are real. This
is the only possible choice ofA (3’), since the solution of equation

(7) with prescribed initial data is unique. Thus we must choose real

functions fora (X). Furthesrmore, if we consider the equation

' 2
(8) Z'-iA*\S\ //7—2—%'— —')\ dj P

b we see that the vertical fixed boundary extension of the free surface will

i B it e = s R PR
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occur when T T is negat‘ive , and will be infinite in extent
R . Y ra) ot &
if either A orJ /V- ?]L.)‘— +A d> becomes infinite for some value

ofS on the extension of the free surface.,

From the standpoint of conformal mapping, we see that we must require
the lower half of the 5 -plane to map into a portion of the A -plane that
is bounded b part or all of the real ;l ~axis. That is, the real Z -axis
must map into part or all of the real P\ ~axigs., If there are nc singular-
ities on the free surface or its extension, then we must map the half-plane
into the half-plane, and the most elementary mapping that accomplishes this
is the mapping;\ (S) '5’ . If we are tc have a singularity on the real
h —axis, it should correspond to A = 0, since the differential equation (7)
has a singularity at this point. If we wish the entire j -axis to map into
a part of the resal A -axis, ws must have a square root singularity at the
origin so that the rezl negative S -axis is doubled back onto the real
positive A -axis. Thus we can use the function A (;S) '-'5 1/2.

If we setA -_f , equation (8) takes the simple form

z--ifof A/_!:"'—{— -1 dj’.

U ]
A good deal of information about the flow can be obtained directly from

this equation without going into the computation. We see that for large

positive 5 , the integrand, ¥ —2%— - 1, is pure imaginary, so that we
are on a vertical fixed boundary. As S ranges from 1/2 to O we mcve

along the free surface. Since the integral involves the square root of
the inverse of 5 , it will be convergent and consequently x will move a

finite distance as 5" traverses the interval from 1/2 to 0. During this

time, y will decrease from 1/2 to 0. When f is negative, we are again

o = . - , 15




i The center of the cycloidal free surface is a stagnation point on a free

die
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on a fixed boundary. Thus it appears that the flow involves two separate
vertical fixed tcundaries with a free surface joining them.

As the computation unfolds, ws obtain first a semi-fountain in two
dimensions. It involves a fixed vertical wall with a flow which moves
up the wall, departs from the wall at right angles into a cycloidal free
surface which meets another wall tangentially, and finally dcscends down
this latter wall. This flow is fllustrated in Figure 10, page 7h. If
this flow is reflected about the higher wall, we obtain a two-dimensional
symmetric fountain. After we have reflected, we may,of course,remove the
center wall so that the free surface becomes a complete cycloid. Figure 11
illustrates this reflscted flow.

It was mentionzd in Chapter I that wnder certain circumstances we

a could have a stagnation pcint on a free surfaces whers the characteristic
angle of E%I did not occur. Figure 11 shows an example of such a flow,
surface where the free surface has a continuously turining tangeoti.

By choosing another branch of the paramater plane we obtain a flow
which occurs in the region of the z-plane which was not included in the
above flows. This sxterior flow is, in fact, the analytic continuation
of the previous interior flow across the free-surface boundary. It comes

down uniformly from + o along 2 vertical fixed boundary, and upon meeting

e

an air bubble which is maintained in a slct, separatss from the fixed

Y

boundary, forming a cycloidal free surface with the air bubble and finally
flowing off to - o along a vertical fixed bourdary displaced horizontally

’ from the original fixed boundary.
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This flow is illustrated in Figure 12. Figure 13 is the reflection
of this flow with the center wall removed. If we consider ourselves fixed
with respect to the outer flow at infinity, we obtain a representation of
one fluid mass rising into another. The free surface now becomes the
interface between the two fluid masses,

This latter interpretation might be cf interest to meteorolopists,
for one finds such pnen~mena in the aimosphere. W¥hen an air mass, which
for this example should be long compared to its width, is heated near the
ground, it breals away irTom the ground and rises into the cool surrounding
air. Of course, in the actual physical occurrence, a wake is formed along
the outside edges of the rising air, However, if we idealize the wake by
placing partitions in the air which rise with it so that no turbulence is
formed on the sides, then the occurrence is described by the example of
this chapter. Figure 1L illustrates this flow,

Davis and Taylor [1] have investigated the mechanics of large bubbles
rising through extended liquids using an approximate thesry. Klso Taylor
[12] investigated the instability of liquid surfaces when accelerated
perpendicular to their planes.

fo develop the mathematics of the flow, we return to the equation

z=-41i% 054/% -1 a¥f ,

and we make the substitution 3 = % cos2 8. Therefore,

developed for z,

dX = .- cos @ sin 8 de iy
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so that
.1 2 A
. z=-1-2—cos 9 - tan 8 cos 8 sin € ds&
=--;—cosze-fsin29d9
=—£c0529-9—*5j‘n29
2 2 N °

This can be written in a neater form if we use the trigonometric identity

20052 8 =1+ cos 20, We have for the parametric ewuations of the flow.

(3h) S = 1/h(1 + cos 28),

[
]

1/L( - 28 + sin 28) - %(1 + cos 26€).

The free surface is obtained by taking © real so that its parametric

R equations are

1/L(- 28 + sin 20),

y = - 1/L(1 + cos 26).

These equations are easily recognized as theose of a cyclcid.

Goirg into the complex 6-plane, we have, setting @ = & + i)) ,

3 1/h[1 + cos(2¥ + i 2‘7)}

1/L(2 + cos 2 cosh 2y - i sin 2§ sinh 27),
so that
Im(Z) = - 1/h sin 2& sinh 277 .

The stream lines are thus obtained for

1/h sin 2& sinh 2m =c,

k

SR S =)
stnh 2% k = 3e.

sin 2 =

S

T S ——
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On the free surface g and ‘7 must satisfy the equation
sin 2% sinh 29 = 0.

The actval free surface is obtained by taking »= o, g arbitrary. The
continuation of the free surface as a fixed boundary is obtained by taking
2 g = n Y and 77 arbitrary. Wz can discover where the images of these

lines are upon computing z for complex values of ©. We have

n

2 ==1/k[i « i cos 20 + 20 ~ sin 20]

A

- 1/L{20 + 1 + i(cos 20 + i sin 28)]

- 1/L(26 + i + 3 ei‘”).

L}

Upen setting 8 = ; + 17 » this becomes
VL[2E +2im + 4 + 3 224 19),

2 =
-7
’

[

gin 2';

]
]
(]

/l:..._.’... *.*.8-2’052; o
/U2 g ay i+1i o5 2§ - e .

so that we have

1h(2E- 27 sin 2),

™
]
'

y=-1hil+27 + e%7 cos 2£).
de see that the fixed boundary continuations of the free surface are of two
types. For & =nIT and 7) arbitrary, the fixed boundaries are lines drop-
ping vertically downwards from the ends of the cycloidal domes. For
§ = n%r the continuations are vertical lines passing through the tops of
the cycloidal domes. In any application, only one dome or ever just a
half-dome is used; however, due tc the periodic nature of the equations,
there are an infinite number of possible domes spaced along the x-axis.
Figure 15 on page 77 shows the two branches of the parameter plane <f @
which yield the internal and externai fiows. Table 7 contains the results of
the computation for the free surface, while Table 8 contains the valnes of 2 3

and 2'7 tcgether with the corresponding images of X and y used to find the

. 1
stream lines k¥ = 5
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The first quadrant yields the internal flow and

the third quadrant yields the external fl:cw.
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We may obtain the velocity expression from the relation

(; (dO .

dQ )
From equation (3L) we have

e
%i = %sin 20,

Aa 1
d; =-§+%‘-cos 29*%—sin 209,
whence
> -sin 26 _ sin 28 (1 - cos 28) - i sin® 28
cos 28 - 1 - 1 sin 26 2 -2 cos 28

If we use the identity sin’ 25 = 1 - ccs® 28 = (1 - cos 20)(1 + ccs 2€), this

simplifies to

i 28

-y

q=%’-[sin2§-i(1fcos2§)]=-%-(l~re Y

Finally, inserting for 28 the quantity ZE - i279 , we have

g %egn sin 2 & -%-(1*e277 cos 2§ ).

It can be seen from this expression that the arrows shown on the streanm
lines in Figures 10 and 12 are correct.

As woe menticned in the beginning of this chapter;, ancther possible
choice for the arbitrary function A{¥) is the quantity 51/2. With
this function, we obtain a relation which represents the flow past a
semi-infinite, thin, vertical obstacle. On the down stream cr right-hand
side of the obstacle, a free surface is formed which leaves the obstacla
tangentially, but quickly turns in the direction of flow. On the upstream

side of the obstacle, the flow parts at a stagnation point oceuring a short




Wway up the obstacle with the upper part of the flow pessing off to infinity
in the vertical dirsction. This example, which is shown in Figure 16 on
page 80, is not physically significant in the large, for the free surface
continues to drop as we go away from the obstacle, so that very large
velocities occur at points far removed from the origin. Furthermore, on
the upstream side of the obstructicn we must either impozs a fixed boundary,
or allow nepative pressures and an infinite piling-up of the water in front
of the obstacle. If, however, we consider oniy the local properties cf ithe
mathematical flow, we can expect to obtain a fairly gocd represcnte
of an actual physical occurrence. In this example, the best physical
picture seems to be the high-speed skimming of the ocean surface by a long,
thin,vertical obstacle. Our coordinate system, however, has bezen chcsen
so that, mathematically, we are riding with the obstacle and the ocean is
flowing past us.

In this example it is more convenient to join =z andS through the

parameter A . From A = 1/2, we have § «A 2, so thas

a¢ =24 aA ,

and
dd _ 1
q; 2R °*
whence
12 1 2
LS L e

We substitute these quantities into equation (8) and obtain
. 3 1 .2
Z'-lA*SlJ-ir-(W) 2Ad)\
- iA +5'|/2A ~1aA

=_ 1A + (2;{ -1)3/2.
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The fourth quadrant yields the lower part of the flow.
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The behavior of the free stream line and the fixed boundary
extension of the free stream line are now apparent. For A> 1/2‘ we
are on the free surface which extends to infinity toward the right.

For A< 1/2 we are on the fixed vertical boundary, which also extends

to infinity, but does so vertically upwards. The pointi% =0is a
branch pcint of the mapping and we can expect the image of this point

on the vertical fixed boundary to be a stagiation point where the stream
lines separate.

The exact behavior of the flow, however, can be determined only
through calculation. We have 5 =A 2, so that if we let A=Z2 + i/
we obtain, for the images of the stream lines, the relation

Im(j 7= 2§7 = constant.
These are, of course, equilateral hyperbolas with the coordinate axes as
asymiptotes, as illustrated in Figure 17, If we set the ceonstant equal
to zero, we find that the {ree surface, together with all its possible
extensions, is the image of the g- ard 77-‘axes.

The most interesting part of the flow is obtainsd by considering
the fourth quadrant of the A -plane. As has already been pointed out,
the actual free surface is the image of that part of the real A —axis
for which g = 1/2, since ithere tne free-surface condition

l-wA'2>o O P |

is satisfied. The free surface 1s hence given parametrically by the

equations

x =1/3 (2§ -3
y=-§, £>i/2 .

<
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) . . ‘) ] h] 5 2/3
Thus lhe free surface resembles th. curve y = x S
. In order tc stay within the region of flow (the fourth quadrant),
we must pass helow the branch puint at é =1/2; consequently, the argument

: 2
of 2A - 1 will change from zero 6 -77 . Thus the argument of (2A - 1)’/2

changes from zero to - 37¥1/2, so that

A - 1Y% o5 (1 -22)3/2,

for O <R < 1/2. This part of the extension of the free surface ss a

fixed boundary is therefore the segment of the y-axis fremy = - 1/2 to y = 1/3.
] The poant ?\= C is a branch point in the mspping. If we were to con-
tinue ir the direction of the negative real 7\-axis, we would continue, in
the z-plare, to rove up the vertical Iixed boundary. However, to stay in
. the branch ¢f the mapping withina the feurth quadrant of the f\ -plane, we
must turn at this point and move down the negative 7-axis. We set

2 . :
/1 = it and ohtain

= 2, i Co By T/
g z =~ t" e (ls2itT)7 0
This is the strzam line *+rat meets Lthe vertical fixed boundary a* a

= $99

stagnation »oint. As this particular Zine is of interest, we will obtain
its parametric equations. Let us call it the %zero" ctrsam line.
= 2 _ ieg | 3 . .
The argument of 2 ¢+ 214" =r e is betweer zero and TT/¢ and is

2 = :
givern ty o« = arctan 2t°., In terms of «, r and t,we may write

B A/ ? 2
z = -t + 3107 (cos = i sin =) ,
- 2 2
whence
. x=~1 —%rB/dsinBo( .
1 2
yﬂ-]{-r’/z cos 5 o,

> 2

TR A X v

N W




Employing the identities

3 1+ cosox.1/2 .

cos 5’ X = {2cc3 % - 1) (= Zo;:x);.,. , (0> =1T),
2 = 4 2

sin 5 o= (2cos X + 1) (I—-—EEE—‘— v/ , (o< <TTV)

and the relations

=

cosocmd, 2 el (2o Y2 (r>1)

L

=

we obtain 1
2 5
.1 (rz _ 1)1/2 _ % r3/2 . 1) ( \ r)1/2

X -
o

1ied

y=3:2E oy (52, >

or, upon simplification.
X = -

EshHY2 132l

.
Y"% (2 - r) (_2_1+r)L/2’ (r > 1).
The derivative assumes the sirple form
dy . Nr -1

dx VE_ * yr + ]

This further extension of the free sur.ace accordingly leaves the y-axis

at right angles in the negative x <irection, turns immediately dovmwards

If we lock for the flow above thiz "zero®™ stream line we must consider
the third quadrant in the ck-plane. The iwages of the stream lines here
correspond to choosing positive constants for the imaginary part »f g’:
consequently, we will soor run into negative pressures if we stray far from

the "zero® stream line.
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Considering again the lines Im(z') = (0, but dwelling now in the
third quadrant of the ')\-plane, we first retrace our steps up the ’7«-axis.
In the z-plane we are of course coming back up th Mzero" stream line,
only now we are on top of it. When we reach t! >rigin in the A -plane,
#& turn and run out the negative real axis. Thus ‘?= O,% = - p2 and

we have Sy s
z=ip- + 31 (14 2p° 32,

This is ths part of the y-axis abovs

The picture of the flicw now becomes clear. The fluid flows up from
the left at an angie of approximately hSO, strikes a plate obstacle which
separates the flow into a part which goes upward, and a part which flows
downward and soon separates from the plate into a free-surface wake. The
stagnation point where the flow divides is the point wherz the "zero®
streamn line meets the y-axis.

Turning to the velccity, we use

af = 2AdA ,

dz = (-~ 1 + ¥2A - 1) dA

to obtain q= q; *iq, = \%f—*‘)
} 27
1o a1
S
On the free surfzace, S y’é"g"_’f, §.>_ 1/2.

i SV
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On the vertical segment fromy = - 1/2 to y = 1/3,
ql"o>

q, = -1+41-2& 0 <£=<1/2.

Finally along the "zero" strzar line we have
r - 1,1/2
)

b4

qy = (
r + 1,1/2

ap = - 1+ E5HY?,

where this r is equal to the r used in the parametric representation

of the "zero® strear: line. Along *the vertical segment from y = 1/3 to

¥ = % o we can use the relations developed for the lower segment,

T P Y e s IR ~n
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Table 1

Pbint,s on the free surface for the trochoidal flow.

x=-§°2} sing; y--%sO -;—Ecosg
3 —x -y
0 0 .210
.10 065 .213
.20 125 217
.50 .33¢ .252
.75 .510 .305
1.00 .703 .372
1.25 91k .50
1T/2 1.22 .563
1.75 1.Lo 627
2.00 1.68 .711
2.25 1.57 . 786
2.50 2.29 .86
2.75 2.62 .888
2.90 2.82 .906
3.00 2.95 .913
T 3.1k 917
3.30 3.36 913
3.50 3.62 .895
3.75 3.95 .853
L.00 L.27 793
L.50 L.8s 37
5.00 5.3L .60
5.50 5.75 .12
2 6.28 .210

e
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Points on the 'stream line k = .25 for the trochoidal flow.

g-'cosml {}L%g—%z—nr‘?g?, x ==& Sy eq;sing; y'-'7-9m‘ = evcosg.
. ' 04"_ ~

.1363 ™
.1365 3.05
.137 2.98
.l 2.76
.15 2.l
.17 2.08
.2 1.7L5
o3 1.15
A .81
5 .56
6 .33
65 .215
57 .16
.69 07

695 0

Table 2

=X

3.014
2.92
2.61
2.18
1.71
1.32
L71h
42
.25
.123

.050
.021

<
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Table 3

Values of ’91 and 70 together with Ay, 2b, ¥ smcothing and

wave height; wave length ratio.

2
I 2b b -1
. log v, * 5— sinhW, =Y, ¢ o—= ;Y = be
71 2 b“'l < 71 b + 1

% smoothing = ZEﬁgéEX 100; wave lengih

b V2 Ws Ay 2b
L .916 .1136 .6U57 .8
3 1.20L 2370 1138 6
.2 1.409 190 .2075 R
.15 1.897 .71L .1233 .3
. 2.303 1.07 .0585 .2
AL 2.996 373 .0160 ol
.025 3.6889 2.h135 .00393 .05

v‘"/‘z

% smoothing
19.3
31.0
Lg.1
59.0
70
8l

4"72 + 1 _71

ratio
1:8
1:10
1:16
1:21
1:31
1:62

1:125




Table 4

_ Depth
) b2 s 1 72

i (N value of bottom below trough = ’72 4 ——g—— 4+ be
: e

. . b e
il A ¢ value of surface at trough = —r— * b
o depth = Yg =Ty
b =¥y =i depth
i A 1.1kL17 .98 L1617
= .3 1.1628 .8ls 3178
< .2 1.336 .72 616
iy
P .15 1.532 661 871
= .1 1.867 .60 1.262
= .05 2.513 .551 1.962
5 )
£ .025 3.193 .525 2,668
'
I




Table 5

N Intersections of the stream lines with the walls of the celi.

<.bL A6 ~Im(Y) -y trough -y crest Ay

A .6 c .6 Ak o2
«395 .60219 .2508 831 677 .54
.38 .6080 U897 1.0k9 .936 2113
.36 .6158 6711 1.223 1.126 .095
o3l 6224 L7972 1.343 1.260 .083
b & o32 .6280 .8936 1.Lh31 1.360 .07
w .30 6335 .9706 1.515 1.kko .075
3 .28 .6385 1.0335 1.593 1.505 .088
: .26 .6k20 1.086k 1.624 1.563 061
‘i{i',i .24 .6L50 1.1294 1.653 1,604 s 1)
& .20 5510 1.1971 1.725 1.67 .055
= .16 6560 1046 1783 1.722 .061
{ i .12 658k 1.2772 1.798 1.755 .0L3
& .08 6602 1.2979 1.827 1.77% .081
%‘ .0l .6607 1.3c92 1.832 1.788 .Oishy
0 .6611 1.3126 1.835 1.791 .ol
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Table 6

Pairs of values on the free surface.

x -y
0 .6
.3L8 595
. 702 .58
1.00k 56
1.2L7 .Sk
1.L462 .52
1.665 .50
1.863 .L8
2.066 L5
2.285 Juy
2.5L7 Lz
2.842 ko5
3.127 A

~
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1.0
1.57
2.1k
2,64
2.8h
3.1

Tatle 7

Points on a cycloid.

Ux = - 20 + sin 20

.16

2.0
1.96
1.88
1.5k
1.0
L6
.12
.04
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Table 8

'P.g and 29 such that sin 2% sinh 279 = % and corresponding
bx and &y.

x = - 2§ 09-273n2§; ‘-’.,-,---1-2y-e-2.7003 2f

2k 22 ux Ly
3.1k +0 ~3.1b - ©
3.0l 2.31 -3.03 -3.21
2.8l 1.28 -2.76 -2,01
2.6l .91 -2.Lu5 -1.56
2.1kL .56 =)..66 -1.25
1.67 9 -1.06 -1.L3
1.57 g - .95 -1.L§
1.L7 by - .86 -1.55
1.0 .56 - .52 -1.87
.5 91 - .3 -2.26
.3 1.28 - .22 -2.55
# 2.31 - .09 -3.u1
-1 -2.31 - .91 ~8.7k
-3 -1,28 - .78 -3.18
-5 -.91 - .69 2627
-1.0 -.56 - A7 -1.39
-1.h47 ) - .15 Y
-1.57 -.u8 - .05 -.52
=1.57 -.l9 .05 =.35
~2.14 -.56 67 o5
-2.64 -.91 1.L5 2.09
-2.8k4 ~1.28 1.76 3.7
-3.04 -2.31 2.03 11.36
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